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 بسم الله الرحمن الرحيـم

فَتـَقْنَاهُمَا وَجَعَلْنَا  رتَـْقًاأَوَلَمْ يَـرَ الَّذِينَ كَفَرُوا أَنَّ السَّمَاوَاتِ وَالَْْرْضَ كَانَـتَا  فَـ
  (03مِنَ الْمَاءِ كُلَّ شَيْءٍ حَيٍّ أفََلََ يُـؤْمِنُونَ )

 الانبياء سورة
Do not the Unbelievers see that the heavens and the earth 

were "rateq" joined together (as one unit of creation), 

before We "fateq" clove (parted) them asunder? We 

made from water every living thing. Will they not then 

believe? (30)     AL-ANBIYA (THE PROPHETS) 
 

This version of holy Quran gives information about the 

beginning of the universe. The heavens and the earth 

contiguous with each other in the darkness do not see the 

severity of thing. Both had been combined together as one 

unit without any hole or distance between their constituents 

"rateq". God, then, by His light, clove this rateq and the 

separation between the heavens and the earth. The sky lifted 

into place, and passed the earth in place, and the separation 

by air between them. 

Depending on nuclear and astronomical evidence, 

scientists suggest that the baryonic matter (everyday 

material) contributes only about 4% to the mass of the 

universe. The rest is composed of dark matter and energy. 

In my opinion, the one dark matter or an extremely dense 

unique single constituent “Rateq” was the early phase of the 

universe in the hand of Exalted Allah, then disintegrated or 

spallated by His own power to form the early phase of the 

Big Bang “Fateq” with cosmological inflation. 

 
Prof. Dr. Khairi M-S. Abdullah 

                                                                         April/2014 

http://www.usc.edu/schools/college/crcc/engagement/resources/texts/muslim/quran/021.qmt.html
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PREFACE 

The thought of this text book originated from the 

author‟s research and academic experience in Iraqi Atomic 

Energy Commission (IAEC) and various universities in Iraq 

in departments of nuclear engineering and physics over 

several years. Furthermore, the previous experience and 

background of our students determined to a large extent the 

level of the included material. 

As a lecturer and researcher of nuclear physics in the 

Department of Physics/University of Duhok, I noticed that 

the majority of undergraduates „and to some extent 

graduates‟ have poor information in atomic physics and a 

lack of knowledge of the physical background of quantum 

mechanics. Chapter Five is devoted to   relate the quantum 

mechanics concepts and their terminologies with the nuclear 

concepts. Integral parts of nuclear concepts and the 

interaction of radiation with matter are essential to have 

some knowledge of quantum mechanics to having full 

command of the language of nuclear physics.  

 Accordingly, this book is intended for junior as well as 

senior undergraduate courses, particularly for students who 

have had previous contact with quantum mechanics. This 

text can also be used in introductory graduate surveys of 

nuclear physics. The book is based on two semester course 

on nuclear physics (excluding particle physics) taught to 

undergraduate juniors.  

I have not tried to be rigorous or present proofs of all 

statements in the text. Rather, I have taken the physical view 

that it is more important that students see an overview of the 

subject which for many „possibly the majority‟ will be the 

only time they study nuclear and particle physics. Therefore, 

the first four chapters deal with nuclear properties and 
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radioactive decay. As mentioned a particular attention has 

been given to the discussion of the related nuclear concepts 

of quantum mechanics in Chapter Five. The rest of the 

chapters are devoted to the nuclear structure and interactions 

of radiation with matter. 

In fact, more than just a slight contact is required in 

order to appreciate many of the subtleties I have infused into 

the book. I hope that this effort will be of benefit for our 

students. 

Perfection is not attainable. It is an attribute of the 

Almighty God. Therefore, I apologize for any drawbacks in 

the text.  

Finally I am grateful for the help of the University of 

Duhok for adopting this book for publication.  

 

 

Prof. Dr. Khairi M-S. Abdullah 

                                           University of Duhok-Iraq 

                                            April- 2014 
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CHAPTER 1 
 

INTRODUCTION TO NUCLEAR 

PHYSICS 
 
The atom is considered to be the basic building block of 

all matter. It is the smallest amount of matter that retains the 

properties of an element. Simple atomic theory tells us that it 

is composed of smaller particles (that no longer have the 

same properties as the overall element) and consists of two 

main components: a nucleus surrounded by an electron 

cloud. The situation seems similar in some respects to 

planets orbiting the sun. From the electrical point of view, 

the nucleus is said to be positively charged and the electrons 

negatively charged. 

 

1.1. Historical View of Nuclear Physics 
 

Early Greek philosophers speculated that the earth was 

made up of different combinations of basic substances, or 

elements which are earth, air, water, and fire. Modern 

science shows that the early Greeks held the correct concept 

that matter consists of a combination of basic elements, but 

they incorrectly identified the elements. 

Later after the birth of Islam in the seventh century, the 

great Arab philosophers and scientists found, inspiried by 

the Holy Quran, answers to questions that Europe had hardly 

began to ask. Amongst many, Arab scholars believed that 

the world was round and the planets orbited the sun. They 

discovered and named many elements (atoms) and chemical 

compounds (molecules). 
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In 1661, the English chemist Robert Boyle published the 

modern criterion for an element. He defined an element to 

be a basic substance that could not be broken down into any 

simpler substance after it was isolated from a compound, but 

could be combined with other elements to form compounds. 

The English chemist John Dalton was the first who 

proposed the modern proof for the atomic nature of matter in 

1803. Dalton stated that each chemical element possessed a 

particular kind of atom and any quantity of the element was 

made up of identical atoms of this kind. What distinguishes 

one element from another element is the kind of atom of 

which it consists, and the basic physical difference between 

different kinds of atoms is their weight. 

The decade from 1895 to 1905 may be termed the 

beginning of modern physics; the investigators applied the 

methods of experimental science to the problems of atom. 

From their studies, they obtained the evidences needed to 

raise the idea of atomism to the level of a full-fledged 

scientific theory. During this period, Roentgen discovered  

x-rays (1895), Becquerel discovered the phenomenon of 

natural radioactivity (1896), J. J. Thomson succeeded in 

demonstrating the existence of the electron, a fundamental 

unit of negative electricity with very small mass (1897) and 

the separation of the elements polonium and radium was 

done by Pierre and Marie Curie (1898). To these 

discoveries, we must add the bold hypothesis put forth by 

Planck to explain the distribution of energy in the spectrum 

of the radiation from a black body. Namely, that 

electromagnetic radiation, in its interaction with matter, is 

emitted or absorbed in whole units, called quanta of energy; 

each quantum has energy E = hν where ν is the frequency of 

the radiation and h is the Planck constant. Einstein (1905), 

in a treatment of the photoelectric effect, extended Planck's 
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hypothesis by showing that electromagnetic radiation, in its 

interaction with matter, behaves as though it consists of 

particles, called photons, each photon having an energy      

E = hν. N. Bohr (1913) used this concept in his very 

successful theory of the hydrogen atom. All these ideas led 

to one of the most important developments of twentieth-

century physics, the quantum theory; this theory includes 

quantum mechanics and the quantum theory of radiation 

(1924-1928). Also during the same period (1905-1913) an 

equally important change in the foundation of physics 

resulted from the development of the theory of relativity by 

Einstein. 

Concerning nuclear physics, the history can be divided 

into three periods. The first period started with the discovery 

of the radioactivity of the nucleus and the subsequence 

developments and ended in 1939 with the discovery of 

fission by Hahn and Strassman as a result of attempts to 

make transuranium elements of atomic number greater than 

92 by bombardment of uranium with neutrons. The second 

period from 1940 to 1969, nuclear physics witnessed 

important developments in practical applications and 

theoretical explanations, such as nuclear spectroscopy, 

reactors and nuclear models. Finally, the emergence of a 

microscopic unifying theory in the 1960‟s allowed one to 

understand the structure and behavior of protons and 

neutrons in terms of the fundamental interactions of their 

constituent particles, quarks and gluons. That period also 

witnessed the identification of subtle non-classical 

mechanisms in nuclear structure.   

To date, 105 different elements have been confirmed to 

exist, and researchers claim to have discovered three 

additional elements. Of the 105 confirmed elements, 90 exist 

in nature and 15 are man-made.   



4 

 

1.2. Subatomic Particles         

 

For almost 100 years after Dalton established the atomic 

nature of atoms, it was considered impossible to divide the 

atom into even smaller parts. All of the results of chemical 

experiments during this time indicated that the atom was 

indivisible.  

Eventually, experimentation into electricity and 

radioactivity indicated that particles of matter smaller than 

the atom did indeed exist. In 1906, J. J. Thompson won the 

Nobel Prize in physics for establishing the existence of 

electrons. Electrons are negatively-charged particles that 

have 1/1836.153 the mass of the hydrogen atom. Soon after 

the discovery of electrons, protons were discovered. Protons 

are relatively large particles that have almost the same mass 

as a hydrogen atom and a positive charge equal in 

magnitude (but opposite in sign) to that of the electron. 

Chadwick discovered the third subatomic particle (Neutron) 

in 1932. The neutron has almost the same mass as the 

proton, but it is electrically neutral. 

 

1.3. Rutherford’s Model of the Atom 
 

The British physicist Ernest Rutherford proposed in 1911 

a new theory of the scattering of α-particles (helium nuclei) 

by matter; based on a new atomic model and was successful 

in describing the experimental results. This theory abolished 

the suggestion made by Thomson in 1898, which was that 

"atoms are simply positively charged lump of matter with 

electrons embedded in them just like that raisins in a 

fruitcake" as shown in Fig. 1.1. 
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Figure 1.1. Thomson‟s model of atom. 

 

Rutherford designed an experiment similar to that of   

Fig. 1.2 where α-particle emitted behind a screen with a 

small hole in it, so that a narrow beam of α-particles was 

produced. This beam was then directed at a thin gold foil. A 

zinc sulfide screen, which gives off a visible flash of light 

when struck by an alpha particle, was set on the side of the 

foil, replaced by a detector in Fig. 1.-2. What Rutherford 

actually found was that although most of the α-particles 

indeed were not deviated by much, a few were deflected in 

very large angles. Some were even deflected in the 

backward direction. He suggested that the deflection of an  

α-particle through a large angle could be caused by a single 

encounter with an atom rather than by multiple scattering. 

He supposed that there is an electric field near an atom 

which agreed well with this kind of experimental evidence. 

 Rutherford proposed a simple model of the atom, which 

could provide such a field. He assumed that the positive 

charge of the atom, instead of being distributed uniformly 
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throughout a region of the size of the atom, is concentrated 

in a minute center or nucleus, and that the negative charge is 

distributed over a sphere of radius comparable with the 

atomic radius; Fig. 1.3 shows the structure within the atom. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. A novel apparatus for testing the angular 

dependence of α-particle scattering. 

   

 

Figure 1.3. Rutherford‟s model of atom. 

Detector 
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1.4. Bohr’s Model of the Atom 
       

In a series of epoch-making papers written between 1913 

and 1915, the physicist Bohr developed a theory of the 

constitution of atoms, which accounted for many of the 

properties of atomic spectra and laid the foundations for 

later research on theoretical and experimental atomic 

physics. N. Bohr, coupling Rutherford's postulation with the 

quantum theory introduced by Max Planck, proposed the 

following postulates: 

1- The atom consists of a dense nucleus of protons 

surrounded by equal number of electrons traveling in 

discrete circular orbits (stationary states) at fixed distances 

from the nucleus, retaining their motion under the influence 

of the Coulomb force without emission of radiation. 

Since the Coulomb force between an orbiting electron 

and the stationary positive nucleus of charge Ze is equal to 

the centripetal force, we can find expressions for the total 

orbital energy E of the electron at an orbital radius r: 

 

r

m

r

Ze
kF

2

2

2 
                                              1.1 

 

where the force F is equal to the Coulomb force and the 

centripetal force, respectively;  ok 41 8.99×10
9
 N.m

2
/C

2
 

is a Coulomb force constant, m is the rest mass of the 

electron and υ is the electron speed. 

It is a standard procedure in electrostatic to the Coulomb 

force Eq.1.1 to obtain the potential energy V of the electron: 

 

r

Ze
kV

2

                                                             1.2 
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The negative sign is present because the force is 

attractive. The kinetic energy T is 2

2

1
m . Therefore the total 

energy E, being the sum of the potential and kinetic 

energies, is: 

r

Ze
k

r

Ze
kmVTE

22

1 22
2                          1.3 

 

2- The different possible stationary states of a system 

consisting of an electron rotating about a positive nucleus 

are those for which the orbits are circles determined by the 

angular momentum L. 

 

nrmL                                                           1.4 

 

where n = 1, 2, 3… is a principle quantum number, and 

2h is Planck's constant, with h=6.63×10
-34

J-s.  

Eqs.1.3 and 1.4 can be solved for the radius of the n
th

 

orbit rn. 

2

22

kmZe

n
rn


                                                        1.5  

 

The radius of the allowed orbits are proportional to n
2
, 

and the radius of the smallest possible orbit (ground state) is 

obtained by setting n = 1, with the known values of the other 

quantities. For hydrogen Z = 1 the ground state radius called 

the Bohr radius is: 

 

o

Am
kme

r 529.010529.0 10

2

2

1  
            1.6  
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The value of the radius from Eq.1.5 can be substituted 

into Eq.1.3 to get an expression for the energy that depends 

on known quantities. 

 

22

422

2 n

eZmk
En                                                      1.7 

 

The ground state energy for hydrogen obtained by using 

n = 1 and   Z = 1 in this equation is E1 = -13.58 eV. This 

energy is just the amount needed to ionize a hydrogen atom 

and is sometimes denoted by E1 for ionization energy. Then 

the expression for the radius and energy of the n
th

 level is: 

 

2

1
1

2 ,
n

E
Eandrnr nn                                          1.8 

 

3- Any emission or absorption of radiation will 

correspond to a transition between two stationary states. 

When an electron changes from one orbit ni to another nf, 

a photon is emitted whose energy is equal to the difference 

in energy between the two orbits: 
















221

11

if

if
nn

EEEh                               1.9 

 

where υ is the frequency of the emitted photon. 

 This equation for the frequency has exactly the same 

form as Balmer's formula, which was found to represent the 

lines of the Balmer‟s series of the hydrogen spectrum.     

Fig. 1.4 is Bohr's model of the hydrogen atom showing an 

electron as having just dropped from the third shell to the 

first shell with the emission of a photon that has energy h  
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(Lyman series). Hawever Bohr's theory was the first that 

successfully accounted for the discrete energy levels of this 

radiation as measured in the laboratory. Although Bohr's 

atomic model is designed specifically to explain the 

hydrogen atom, his theories apply generally to the structure 

of all atoms.  

The properties of the three subatomic particles are listed 

in Table 1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Bohr's model of the Hydrogen atom. 

 

Table 1.1. Properties of subatomic particles. 

 

Particle             Location              Charge         Mass 

 

Electron   Shells around nucleus     -ve      0.0005486 u 

Proton               Nucleus                  +ve     1.007277   u 

Neutron            Nucleus                 none     1.008665   u 
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1.5. Measuring Units on the Atomic Scale       

 

The size and mass of atoms are so small that the use of 

normal measuring units, while possible, is often 

inconvenient.  

First, the conventional unit of mass, the kilogram, is 

rather large for use in   describing characteristics of nuclei. 

For this reason, a special unit called the Atomic Mass Unit 

(amu or u) is often used. This unit is defined as 1/12
th 

of the 

mass of the stable most commonly occurring isotope of 

carbon, 
12

C. In terms of grams, units of measure have been 

defined for mass and energy on the atomic scale to make 

measurements more convenient to express. One atomic mass 

unit is equal to1.66 x 10
-27

 kg.  

Second, the unit for energy is the electron volt (eV); the 

electron volt is the amount of energy acquired by a single 

electron when it falls through a potential difference of one 

volt. Energy of one electron volt is equivalent to             

1.602 x 10
-19

 joules. 

Third, the unit of the size of the atom, comes from the 

radii of nuclei and atoms, is Fermi (fm), where 1fm=10
-15

 m 

= 10
-13

 cm. 

 

1.6. Equivalence of Mass and Energy 
  

The great theory of 20
th

 century physics that is 

indispensable to the development of atomic and nuclear 

physics is the special theory of relativity proposed by 

Einstein in 1905. The first applications of the relativity 

theory depend on two closely related ideas. One idea is that 

of the variation of mass of a particle with its velocity; the 

second is that of the proportionality between mass and 

energy, so that the mass can be considered to be as another 
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form of energy. Thus, the law of conservation of energy is 

really the law of mass-energy. In normal every day 

interactions, the amount of mass that is transferred into other 

forms of energy (or vice versa) is such a tiny fraction of the 

total mass that it is beyond our sensory perceptions and 

measurement techniques. Thus, in a chemical reaction, for 

example, mass and energy truly seem to be separately 

conserved. In a nuclear reaction, however, the energy 

released is often about a million times greater than in a 

chemical reaction, and the change in mass can easily be 

measured. The mass and energy are related by what is 

certainly the best-known equation in physics: 

 

E = mc
2
                                                                    1.10 

 

In which E is the energy equivalent called mass energy of 

mass m, and c is the speed of light. 

A real understanding of this relationship can come only 

from a careful study of the relativity theory that is beyond 

the scope of this textbook. However, the main relationships 

of the special theory of relativity will be discussed. 

After the problem raised by the Michelson-Morley 

experiment of propagation of light, Einstein interpreted their 

negative results to mean that it is indeed impossible to detect 

any absolute velocity through the ether. He deduced the time 

as the fourth dimension and found the interdependence 

between the space and time coordinates. One of the most 

important concepts developed in the original formulation of 

the relativity theory was the mass of a particle, as measured 

by an observer, was a function of its velocity υ relative to the 

observer. The term relativistic mass m, was used for the 

mass of a particle moving with relativistic speed, that is, a 

speed comparable to the speed of light c (3×10
8
 m s

-1
). The 
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relativistic mass m was given in terms of mass m0 of the 

particle at rest by the equation. 

22

0

1 c

m
m


                                                1.11 

The quantity m0 is usually referred to as the rest mass of 

the particle. One of the consequences of this equation is that 

the relativistic mass approaches infinity as the velocity υ 

approaches the velocity of light c. Stated another way, no 

material particle can move with velocity greater than c.  

The variation of mass with velocity leads to 

modifications of our ideas about energy. Because energy is 

the integral of force with respect to distance, kinetic energy 

T can be represented by the following expression: 


s

FdsT
0

                                                        1.12 

where F is the component of the applied force in the 

direction of the displacement ds, and s is the distance over 

which the force acts.  

Using the relativistic form of the second law of motion:  

dt

md
F

)( 
                                                       1.13 

Then the expression for kinetic equation (Eq.1.12) becomes: 

 

s m

mdds
dt

md
T

0 0

)(
)(






                 1.14                                   

Now inserting Eq.1.11 for m we get: 
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



























0
2

2

0

1
c

m
dT                                          1.15 

Integrating the last equation by parts, we get: 

2

0

2 cmmcT                                                1.16 

This result states that the kinetic energy of a body is 

equal to the increase in its mass consequent upon its relative 

motion multiplied by the square of the speed of light. This 

equation may also be interpreted as meaning that the rest 

mass m0 is associated with an amount of energy m0c
2
, which 

may be called the rest energy E0 of the body. The total 

energy E of the body is then the sum of the kinetic energy 

and the rest energy, or:   

2

2

2

02

0

2

0

1
c

cm
mc

ETcmTE






                                 1.17 

Hence, associated with a mass m, there is an amount of 

energy mc
2
; conversely, to an energy E, there corresponds a 

mass given by: 

2c

E
m                                                               1.18 

The momentum associated with the transfer of energy is 

another important consequence of the proportionality 

between mass and energy. If a quantity of energy is 
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transferred with a velocity υ, we can write for the magnitude 

of the associated momentum P:  

2c

E
mp


                                                 1.19 

Eq.1.17 is a first-order relation for the total energy. In 

connection with    Eq.1.19, a second-order relation can be 

found to express the total energy: 

2

0

222 EpcE                                                 1.20 

 For electromagnetic radiation or light quantum (photon), 

Eq.1.19 can be applied to the energy and momentum carried 

by the photon.  

hE                                                                   1.21                              



 h

c

h

c

E
c

c

E
p 

2                              1.22   

where h is, Planck's constant,  and λ are the frequency and 

wavelength of the photon respectively.  

In addition, its velocity is c.  In Eq.1.22, the de Broglie 

wave wavelength is defined as λ = h/p. 

Two limiting cases are worth mentioning. 

 

1- Non-relativistic regime (E0 >> T), then: 




0

2/1

0

2/1

0
)2(

,)2(
m

h

Tm

h
Tmp               1.23 
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2- Extreme relativistic regime (T >> E0), her energy is    

usually denoted as E rather than T, then:  

E

hc

c

E
p  ,                                             1.24 

Eq.1.24 also applies to photons and neutrinos, which 

have zero rest mass. The kinematical relations just discussed 

are general. In practice, we can safely apply the non-

relativistic expressions to neutrons, protons, and all 

nuclides, because their rest mass energies are always much 

greater than any kinetic energies we will encounter. The 

same is not true for electrons, since we will be interested in 

electrons with energies in the MeV region. Thus, the two 

extreme regimes do not apply to electrons, and one should 

use Eq.1.20 for the energy-momentum relation.  

The rest mass of the photon must be zero; otherwise the 

mass of a photon traveling with the velocity of light would 

be infinite, because the denominator of Eq.1.11 becomes 

zero for υ = c. Although the rest mass of a photon is zero, 

the photon has a mass associated with its kinetic energy, 

according to Eq.1.18. This mass is 
2c

h
, and corresponding to 

this mass is the momentum
c

h . 

It is often convenient in nuclear physics to use the energy 

corresponding to one atomic mass unit (1 amu). This mass is 

1.66×10
-24 

g, or 931.5 MeV. Then for any particle, its total 

energy is given by:   

 

E (MeV) = m (u) × 931.5                                         1.25 
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1.7. Nuclide Classifications  

The total number of protons in the nucleus of an atom is 

called the atomic number of the atom and is given the 

symbol Z. The number of electrons in an electrically neutral 

atom is the same as the number of protons in the nucleus. 

The number of neutrons in a nucleus is known as the neutron 

number and is given the symbol N. The mass number of the 

nucleus is the total number of nucleons, that is, total number 

of protons and neutrons in the nucleus. The mass number is 

given the symbol A and can be found by sum of Z + N = A. 

Each of the chemical elements has a unique atomic 

number because the atoms of different elements contain a 

different number of protons. The atomic number of an atom 

identifies the particular element. 

Each type of atom that contains a unique combination of 

protons and neutrons is called a nuclide. Not all 

combinations of numbers of protons and neutrons are 

possible, but about 2500 specific nuclides with unique 

combinations of neutrons and protons have been identified. 

Each nuclide is denoted by the chemical symbol of the 

element with the atomic number written as a subscript and 

the mass number written as a superscript, as shown in      

Fig. 1.5. Because each element has a unique name, chemical 

symbol, and atomic number, only one of the three is 

necessary to identify the element. For this reason, nuclides 

can also be identified by either the chemical name or the 

chemical symbol followed by the mass number (for 

example, U-235 or uranium-235). Another common format 

is to use the abbreviation of the chemical element with the 

mass number superscripted (for example, 
235

U).  
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Figure 1.5. Nomenclature for identifying nuclides. 

 

Example: 

State the name of the element and the number of protons, 

electrons, and neutrons in the nuclides listed below: 

 

PuCdNBH 239

94

114

48

14

7

10

5

1

1 ,,,,  

                  

Solution: 

The name of the element can be found from the Periodic 

Table (refer to Chemistry   Fundamentals Handbook) or the 

Chart of the Nuclides (to be discussed later). The number of 

protons and electrons is equal to Z. The number of neutrons 

is equal to A-Z. 

         

1459494

664848

777

555

011

Pr

239

94

114

48

14

7

10

5

1

1

PlutoniumPu

CadmiumCd

NitrogenN

BoronB

HydrogenH

NeutronsElectronsotonsElementNuclide
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1.7.1. Isotopes 

Isotopes are nuclides that have the same atomic number 

and are therefore the same element, but differ in the number 

of neutrons. Most elements have a few stable isotopes and 

several unstable, radioactive isotopes. For example, oxygen 

has three stable isotopes that can be found in nature 

(oxygen-16, oxygen-17, and oxygen-18) and eight 

radioactive isotopes. Another example is hydrogen, which 

has two stable isotopes (hydrogen-1 and hydrogen-2) and a 

single radioactive isotope (hydrogen-3). 

Different isotopes of the same element have essentially 

the same chemical properties. The isotopes of hydrogen are 

unique in that each of them is commonly referred to by a 

unique name instead of the common chemical element 

name. Hydrogen-1 is usually referred to as hydrogen. 

Hydrogen-2 is commonly called deuterium and symbolized
 

2
1D. Hydrogen-3 is commonly called tritium and symbolized 

3
1T. It is convenient to use the symbols 

2
1H and 

3
1 H for 

deuterium and tritium, respectively. 

 

1.7.2. Isobars 

Isobars are those nuclides that have the same mass 

number (A), but different numbers of protons and neutrons 

(Z & N). A special case is, when two isobars have proton 

and neutron numbers interchanged as in 11  ZA

A

ZZA

A

Z YandX , 

they are called mirror nuclides,  8

15

77

15

8.,. NandOge . 

 

1.7.3. Isotones 

 Isotones are those nuclides that have the same number of 

neutrons (N), but different numbers of protons and mass 

numbers   (Z & A). 
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1.8. Nuclear Radii and Densities  
 

It is difficult to define exactly the size of an atom because 

the electron cloud, formed by the electrons moving in their 

various orbitals, does not have a distinct outer edge. A 

reasonable measure of atomic size can be the average 

distance of the outermost electron from the nucleus. Except 

for a few of the lightest atoms, the average atomic radii are 

approximately the same for all atoms, about 2 x 10
-8

 cm. 

Like the atom, the nucleus does not have a sharp spherical 

outer boundary. 

Like any other object, the size and the shape of an object 

is to examine the radiation scattered from it (taking its 

photograph). To see the object and its details, the 

wavelength of the radiation must be smaller than the 

dimensions of the object; otherwise, the effects of diffraction 

will partially or completely obscure the image. For nuclei 

with a diameter of about 10 fm, we require λ ≤ 10 fm. 

corresponding to  p ≥ 100 MeV/c. The experimental access 

to obtain information on nuclei radii comes from scattering 

particles (e
-
, p, π

±
,…) off the atomic nucleus with 

appropriate energy. Electron scattering off nuclei is, for 

example, one of the most appropriate methods to deduce 

nuclear radii and charge distribution. Experiments have 

shown that the nucleus is a shaped like a sphere with a 

radius that depends on the atomic mass number of the atom 

with the central nuclear charge and/or matter density is 

nearly the same for all nuclei. Nucleons do not seem to 

congregate near the center of the nucleus, but instead have a 

fairly constant distribution out to the surface. Thus, the 

number of nucleons per unit nuclear volume is roughly 

constant. 
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                           1.26 

 

where:  R= mean radius of the nucleus  

         A = atomic mass number  

Calling R0 an elementary radius for a nucleon in the 

nucleus, a most naïve estimate is given for the nuclear 

volume V=4/3πR
3
;  

 

V = 4/3πR0
3
A                                                            1.27 

  

or     R = R0A
1/3

                                                                 1.28 

 

This relation describes the variation of the nuclear 

radius, with a value of R0 ≈ 1.2 fm when deducing a 'charge' 

distributing radius, and a value of R0 ≈ 1.4 fm for the full 

'matter' distributing radius. The values of the nuclear radii 

for some light, intermediate, and heavy nuclides are shown 

in Table 1.2. 

The table clearly shows that the radius of a typical atom 

(e.g. 2 x 10
-8 

cm) is more than 25,000 times larger than the 

radius of the largest nucleus. 

 

Table 1.2 calculated values for nuclear radii. 

 

 

 

 

 

 

 

 

 

Nuclide                        Radius of nucleus                     

  

cmCf

cmU

cmHf

cmFe

cmB

cmH

13252

98

13238

92

13178

72

1356

26

1310

5

131

1

1089.7

1074.7

1001.7

1078.4

1069.2

1025.1
























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Experimental measurements as well as theoretical 

calculations based on quantum mechanics give the most 

detailed descriptions of the complete nuclear charge and 

matter distribution. A corresponding typical profile is a 

Fermi or Woods-Saxon shape, described by the expression: 

 

aRrch
e

r
/)(

0

1
)(





                                              1.29 

 

Here ρ0 is the central density which has a value in the 

range 0.08-0.06 for medium to heavy nuclei and decreases 

slowly with increasing mass number. a = 0.524 fm describes 

the diffuseness of the nuclear surface. 

Fig. 1.6 shows how diffuse the nuclear surface appears to 

be. The charge density, in unit efm
-3

 is roughly constant out 

to a certain point and then drops relatively slowly to zero. 

The distance, over which this drop occurs is nearly 

independent of the size of the nucleus, and is usually taken 

to be constant, the distance over which the charge density 

falls from 90% of its central value to 10% is defined as skin 

thickness t, its value is approximately 2.3 fm.  

A useful quantity to determine the relationship between 

the nuclear radius and mass number, based on electron 

scattering result is the mean square charge distribution 

radius:  





0

22 )( drrrr ch                                                   1.30 

 

Then by solving the Schrödinger (or Dirac) equation 

using a Hamiltonian that includes the full electromagnetic 

interaction and using nuclear wavefunction or the   so-called 
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Born approximation, the mean square charge radius for 

medium and heavy nuclei is given approximately by: 

23
2

2 94.0 fmAr                                                  1.31 

 

The nucleus is often approximated by a homogeneous 

charge sphere. The radius R of this sphere is then quoted as 

the nuclear radius. The relation of this to mean square radius 

is 22

3

5
rR  , so that: 

 

Rch = 1.25 A
1/3

 fm                                                     1.32 

 

On the other hand, to determine the nuclear matter 

density, instead of an electron, a strongly interacting particle 

(Hadron) has to be used as a projectile. At high energies, the 

nucleus behaves more like an absorbing sphere (elastic 

scattering is only a small part of interaction). In this case, the 

incident particle of momentum p will have an associated 

quantum mechanical wave of wavelength λ = h/p (as will be 

seen in Chapter 5) and will suffer diffraction-like effects, as 

in optics, that is to say, we are dealing with the nuclear 

strong interaction (neglecting coulomb interaction). 

Taking the presence of neutrons into account by 

multiplying ρch(r) by A/Z, we find an almost identical 

nuclear matter density in the nuclear interior for all nuclei, 

i.e. the decrease in ρ0 with increasing A is compensated by 

the increase in A/Z with increasing A. The interior nuclear 

density, given by: 

 

                                                
 ρmat ≈ 0.17 nucleons/fm

3
 ≈ 2.845×10

17
 kg/m

3
,        1.33 
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is independent of A, and this density is approximately 10
14

 

times normal matter density and expresses the highly packed 

density of nucleus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Radial charge distributions ρch of various 

nuclei.  

 

1.9. Forces in the Nucleus 
 

In the Bohr‟s model of the atom, the nucleus consists of 

positively charged protons and electrically neutral neutrons. 

Since both protons and neutrons exist in the nucleus, they 

both referred to as nucleons. One problem that the Bohr‟s 

model of the atom faced was accounting for an attractive 

t 
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force to overcome the repulsive force between protons 

inside the nucleus. 

The two classical forces present in the nucleus are        

(1) electrostatic forces between charged particles and        

(2) gravitational forces between any two objects that have 

mass. It is possible to calculate the magnitude of the 

gravitational force and electrostatic force based upon 

principles from classical physics. However, to bind the 

nucleus together, there must be a strong attractive force of 

totally different kind, strong enough to overcome the 

repulsive force of the positively charged nuclear protons and 

to bind both protons and neutrons into this tiny volume. 

 

1.9.1. Gravitational force 
 

Newton stated that the gravitational force between two 

bodies is directly proportional to the masses of the two 

bodies and inversely proportional to the square of the 

distance between the bodies. This relationship is shown in 

the equation below: 

 

2

21

r

mGm
Fg                                                           1.34             

 where:  

           Fg = gravitational force (Newton) 

           m1 = mass of first body (kilogram) 

           m2 = mass of second body (kilogram) 

            G = gravitational constant (6.67 x 10
-11

 N-m
2
/kg

2
) 

            r = distance between particles (meter) 

 

The equation illustrates that the larger the masses of the 

objects are or the smaller the distance between the objects is, 
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the greater the gravitational force is. Therefore, even though 

the masses of nucleons are very small, the fact that the 

distance between nucleons is extremely short may make the 

gravitational force significant. It is necessary to calculate the 

value for the gravitational force and compare it to the value 

for other forces to determine the significance of the 

gravitational force in the nucleus. The gravitational force 

between two protons that are separated by a distance of     

10
-20

 meters is about 10
-24

 Newtons. 

 

1.9.2. Electrostatic force     
 

Coulomb's Law can be used to calculate the force 

between two protons. The electrostatic force is directly 

proportional to the electrical charges of the two particles and 

inversely proportional to the square of the distance between 

the particles. Coulomb's Law is stated in terms of the 

following equation.                                                                                                                                 

2

21

r

QKQ
Fe                                                            1.35 

where: 

       Fe = electrostatic force (Newton) 

       K = 1/4πε0, electrostatic constant (9.0 x 10
9
 N-m

2
/C

2
) 

      Q1 = charge of first particle (coulomb) 

      Q2 = charge of second particle (coulomb) 

        r = distance between particles (meter) 

 

Using this equation, the electrostatic force between two 

protons that are separated by a distance of 10
-20

 meters is 

about 10
12

 Newtons. Comparing this result with the 

calculation of the gravitational force, (10
-24

 Newton) shows 

that the gravitational force is so small that one can neglect it.  
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1.9.3. Nuclear force 
 

If only the electrostatic and gravitational forces existed in 

the nucleus, it would be impossible to have stable nuclei 

composed of protons and neutrons. The gravitational forces 

are much too small to hold the nucleons together compared 

to the electrostatic forces repelling the protons. Since stable 

atoms of neutrons and protons do exist in nature, there must 

be other attractive force acting within the nucleus; this force 

is called the nuclear force. 

The nuclear force is a strong attractive force that is 

independent of charge. It acts only between pairs of 

neutrons, pairs of protons, or a neutron and a proton. The 

nuclear force has a very short range; it acts only over 

distances approximately equal to the diameter of the nucleus 

(10
-15

 m), even less. The attractive nuclear force between all 

nucleons drops off with distance much faster than the 

repulsive electrostatic force does between protons. As will 

be seen in the next section, the nuclear force can be divided 

into three families of interactions due to a strong force that 

binds quarks together to form neutrons and protons.  

In stable atoms, the attractive and repulsive forces in the 

nucleus are balanced. If the forces do not balance, the atom 

cannot be stable, and the nucleus will emit radiation in an 

attempt to achieve a more stable configuration. Table 1.3 

summarizes the behavior of each force. 
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Table 1.3 Forces acting in the nucleons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.10. Elementary Particles 
 

It is hard to define elementary particle, but one can define 

it as 'that particle which has no internal constitution 

(construction) when bounded (not free)'.  

As the scattering experiments technologies, as well as the 

quantum mechanics theory developed in early 1950s, very 

large numbers of unstable particles with very short lifetime 

have been discovered. This immerged in the mid 1960s in 

the form of QUARK model, by M.Gell-Mann. He postulated 

that new bounded particles were of three families of more 

fundamental physical particles called quarks. Each quark is 

characterized by its mass, electric charge and its spin. 

Three nuclear interaction forces (Nuclear Force) can 

belong to three families of elementary particles. These 

different particles are responsible for the nuclear interaction 

phenomena. The three nuclear forces are. 
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1- Electromagnetic interaction force. 

The most familiar elementary particle is the electron, 

which we know is bound in atom by the electromagnetic 

interaction, where the interaction force is transmitted 

discontinuously by the exchange of the PHOTONS; a 

particle of zero mass and zero charge. This interaction is 

described by a highly successful theory called Quantum 

Electrodynamics QED. 

 

2- Strong nuclear interaction force.  

It is responsible for binding the nucleus. It is a short-

range force whose magnitude is independent of the type of 

nucleon, proton or neutron (charge independent). This force 

acts by the exchange of MESONS elementary particles.  

The theory that describes the strong interactions, that is, 

the force that acts between quarks, is called Quantum 

Chromodynamics QCD, this force is repulsive at very short 

range as well as being attractive at greater nucleon-nucleon 

distances; this keeps the nucleons in the nucleus packed 

together but not mashed together.  

 

3- Weak nuclear interaction force. 

The weak force is a short-range force responsible for all 

kinds of decays (Beta, neutron decays …) by the exchange 

of BOSONS elementary particles. 

  

1.10.1. Mesons 
 

Are elementary particles that carry the nuclear force 

between nucleons, having a mass-energy of the order 200 

MeV, and an integer spin momentum S=0. Free meson can 

be produced in nucleon-nucleon collisions and then decay 
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rapidly to lighter mesons or photons within a very short 

decay lifetime of order 10
-20

– 10
-8

 s.  

The families of mesons are. 

1- π-mesons (PIONS) are the lightest member of spin 

momentum s = 0, mass about 270 times the mass of 

electron, and the rest mass energy mπc
2
 = 140 MeV. 

Pions exist in three forms, which are π
+
 (of positive 

charge), π
-
 (of negative charge), and π

0
 (neutral). The 

maximum range of mesons rmax can be computed by 

Heisenberg uncertainties, to be.       

       

2max
cm

c

cm
r




                                                1.36 

         

    rmax   = 197 MeV.fm/ 140 MeV =  1.4  fm   

 

2- Bosons are massive mesons and accordingly are of 

shorter range, with integer spin momentum s = 1or 2. The 

common types of bosons which contribute to nuclear 

force are. 

                       

         η   meson             mηc
2 
=  549 MeV 

               
B   meson            mBc

2 
=  5278 MeV 

         ω   meson            mωc
2 

=  782 MeV   

  

Some other elementary particles, which are now 

considered to be a small member of physical entities, 

include quarks, (electron, neutrinos called Leptons), photon, 

and nucleons called Baryons, and more others. 
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Problems  
 

1-1 What was the minimum distance to which the 7.69 MeV 

alpha particles could approach the center of the gold nuclei 

in Rutherford‟s experiments? 

 

1-2 What is the largest quantum number of the atomic state 

of the Li
+2

 ion with an orbital radius less than 50 A
o
? 

 

1-3 Hydrogen atoms in states of high quantum number have 

been created in the laboratory and observed in space. They 

are called Rydberg atoms. a- Find the quantum number of 

the Bohr orbit in a hydrogen atom whose radius is 0.01 mm. 

b- What is the energy of a hydrogen atom in this state?  

 

1-4 An electron collides with a hydrogen atom in its ground 

state to the excited state of n = 3. How much energy was 

given to the hydrogen atom in this inelastic collision (kinetic 

energy is not conserved)? 

 

1-5 What is the orbital velocity of the electron in the excited 

state of the problem 1.4? 

 

1-6 What is the wavelength and momentum of a photon of 

lowest energy in the Ballmer series of hydrogen? 

 

1-7 Calculate the ratio of the mass of a particle to its rest 

mass when the particle moves with speeds that are the 

following fractions of the speed of light: 0.2, 0.5, 0.8, 0.9, 

0.95, and 0.99. 
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1-8 Derive the following useful relationships concerning the 

relativistic properties of moving particles: 

222222

2

2222222

)()()(
1

2
1

)()()(

cmPccmTbPcE
c

mc

TcmT
c

PbcmmcPca

ooo

oo





 

 

1-9 The speed of a proton is increased from 0.2c to 0.4c, by 

what factor does its kinetic energy increase? Now if the 

speed is doubled again to .8c, by what factor does the kinetic 

energy increase now? 

 

1-10 Derive Eq.1.25. 

 

1-11 A stationary body explodes into two fragments; each 

has mass 1.0 Kg that move apart at speeds of 0.6c relative to 

the original body. Find the mass of the original body. 

 

1-12 Suppose two photons, each of energy 0.5 MeV, collide 

to form a particle, find the mass of that particle. If the 

velocity of the formed particle is 0.8c, what is its rest mass? 

 

1-13 The greater the atomic number Z of an atom is, the 

larger its nucleus is and the closer its inner electrons are to 

the nucleus. Compare the radius of the U238

92  nucleus with the 

radius of its innermost Bohr orbit. 

 

1-14 Estimate the nuclear radius of the ground state of the 

following isotopes InSb 111

49

111

51 , . What are their cross-sectional 

areas? 
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1-15 Using the R  A
1/3

 observation, estimate the average 

mass density of a nucleus in (kg/m
3
) and compare with the 

atomic density of hydrogen. 

 

1-16 What is the charge density of the nucleus in a boron-10 

and uranium-238 atoms? Compare your results with their 

material densities. 

 

1-17 Determine the expected (possible) location of the 

following elementary particles: a- proton, b- η meson,         

c- m=0.05 u. 

 

1-18 How much energy would a proton particle need in 

order to “just touch” the nuclear surface in a gold foil? 

 

1-19 Find the expected elementary particle mass energy that 

may be responsible for the K-capture in the following 

isotopes; GdH 152

64

1

1 , . 
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CHAPTER 2 
 

PERTINENT NUCLEAR PROPERTIES  
  

2.1. Neutron - Proton Ratios 
      

A nuclear species is characterized by its number of 

protons Z and number of neutrons N. There are thousands of 

combinations of N and Z that lead to nuclei that are 

sufficiently long-lived to be studied in the laboratory. The 

large number of possible combinations of neutrons and 

protons is to be compared with the only 100 or so elements 

characterized simply by Z.  

Fig. 2.1 shows the distribution of the world nuclides 

plotted on the same axes as the Chart of the Nuclides. Most 

nuclei are unstable, i.e., radioactive. Generally, for each       

A = N + Z there is only one or two combinations of (N, Z) 

sufficiently long-lived (or stable) to be naturally present on 

earth in significant quantities. These nuclei are the black 

squares in Fig. 2.1 that define the bottom of the valley of 

stability. 

As the mass numbers become higher, the ratio of 

neutrons to protons in the nucleus becomes larger. For 

example, helium-4 (2 protons and 2 neutrons) and oxygen-

16 (8 protons and 8 neutrons); this ratio is unity. While for 

indium-115 (49 protons and 66 neutrons), the ratio of 

neutrons to protons has increased to 1.35, and for uranium-

238 (92 protons and 146 neutrons), the neutron to proton 

ratio is 1.59.  

Generally speaking, when we examine the characteristics 

of stable nuclei, we find that for A < 40, the number of 

protons equals the number of neutrons (N = Z), as 
40

Ca. 
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However, beyond A = 40, stable nuclei have N ~ 1.7Z, 

namely, neutrons far outnumber protons (see Fig. 2.1). This 

can be understood from the fact that, in larger nuclei, the 

charge density, and therefore the destabilizing effect of 

Coulomb repulsion, is smaller when there is a neutron 

excess. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Neutron - Proton Plot of the world Nuclides. 

 

Furthermore, a survey of the stable nuclei (see Table 2.1) 

reveals that even-even nuclei are the ones most abundant in 

nature. This again lends support to the strong-pairing 

hypothesis, namely that pairing of nucleons leads to nuclear 

stability. 

In Fig. 2.1, the black squares are long-lived nuclei 

present on earth. Unbound combinations of (N, Z) lie outside 

the lines marked 'last proton/neutron unbound' which are 

predicted to be unbound. Most other nuclei are β-decay or α-

decay to stable nuclei.  
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Table 2.1. Number of stable nuclei in nature. 

 

  

 

 

 

 

 

 

 

 

If a heavy nucleus were to split into two fragments, each 

fragment would form a nucleus that would have 

approximately the same neutron-to-proton ratio as the heavy 

nucleus. This high neutron-to-proton ratio places the 

fragments below and to the right of the stability curve 

displayed by Fig. 2.1. The instability caused by this excess 

of neutrons is generally rectified by successive beta 

emissions, each of which converts a neutron to a proton and 

moves the nucleus toward a more stable neutron-to-proton 

ratio. 

   

2.2. Chart of the Nuclides 
 

A tabulated chart called the Chart of the Nuclides,      

National Nuclear Data Center, http://www.nndc.bnl.gov/chart/, 

lists the world stable and unstable nuclides in addition to 

pertinent information about each one. Fig. 2.2 shows a small 

portion of a typical chart. This chart plots a box for each 

individual nuclide, with the  number  of  protons (Z) on  the  

vertical  axis  and  the  number  of   neutrons (N =A - Z) on 

the horizontal axis. 

   N             Z               Number of stable nuclei  

Even         Even                         156 

Even         Odd                           48 

Odd          Even                          50 

Odd          Odd                            5 

http://www.nndc.bnl.gov/chart/
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The completely white squares indicate stable isotopes. 

Those in gray (colored in the original chart) squares are 

artificially radioactive, meaning that they are produced by 

artificial techniques and do not occur naturally. By 

consulting a complete chart, other types of isotopes can be 

found, such as naturally occurring radioactive types (but 

none are found in the region of the chart that is illustrated in 

Fig. 2.2). 

Located in the box on the far left of each horizontal row 

is general information about the element. The box contains 

the chemical symbol of the element in addition to the 

average atomic weight of the naturally occurring substance 

and the average thermal neutron absorption cross section. 

The known isotopes (elements with the same atomic number 

Z but different mass number A) of each element are listed to 

the right. 

The chart of nuclides is very useful in determining the 

different radioactive decays, and allows visualizing entire 

decay chains in the effective fashion. The different 

radioactive decays can easily be connected with movement 

in the chart, e.g. alpha-decay corresponds to two-left, two-

down, beta(-ve) decay corresponds to one-left, one–up, and 

beta(+ve) decay corresponds to one-right, one–down, as 

shown in Fig. 2.3.  

 

2.2.1. Information for stable nuclides  
 

For the stable isotopes, in addition to the symbol and the 

atomic mass number, the number percentage of each isotope 

in the naturally occurring element (the abundance) is listed 

in the chart of nuclides, as well as the thermal neutron 

activation cross section and the mass in atomic mass units 

(u) may be available.  
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Figure 2.2. Chart of the nuclide for atomic numbers 1 to 13. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Determination of the different radioactive 

decays. 
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2.2.2. Information for unstable nuclides  
      

For unstable isotopes the additional information includes 

the half-life, the mode of decay (for example, β, α), the total 

disintegration energy in MeV (million electron volts), and 

the mass in u when available.  

 

2.3. Natural Abundance of Isotopes 
 

The relative abundance of an isotope in nature compared 

to other isotopes of the same element is relatively constant. 

The chart of the nuclides presents the relative abundance of 

the naturally occurring isotopes of an element in units of 

atom percent. Atom percent is the percentage of the atoms of 

an element that are of a particular isotope. Atom percent is 

abbreviated as a/p. 

For example, if a cup of water contains 8.23 x 10
24

 atoms 

of oxygen, and the isotopic abundance of oxygen-18 is 

0.20%, there are 1.65 x 10
22

 atoms of oxygen-18 in the cup. 

The atomic weight for an element is defined as the 

average atomic mass of the isotopes of the element. The 

atomic weight for an element can be calculated by summing 

the products of the isotopic abundance of the isotope with 

the atomic mass of the isotope. 

                 

Atomic weight = ∑ a/p * atomic mass of isotope       2.1 
                               

 Isotopes 

Example:  

Calculate the atomic weight for the element lithium. 

Lithium-6 has an atom percent abundance of 7.5% and an 

atomic mass of 6.015122 u. Lithium-7 has an atomic 

abundance of 92.5% and an atomic mass of 7.016003 u. 

Solution: 
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 Atomic weight (Lithium) = (0.075)(6.015122 u)+(0.925)(7.016003 u)  

                                          = 6.9409 u 

 

The other common measurement of isotopic abundance is 

weight percent (w/o). Weight percent is the percentage 

weight of an element that is a particular isotope. For 

example, if a sample of material contained 100 kg of 

uranium that was 28 w/o uranium-235, 28 kg of 
235

U was 

present in the sample.  

The atomic percentage of isotopes can be changed 

artificially in processes called enrichment processes because 

they selectively increase the proportion of a particular 

isotope. The enrichment process typically starts with feed 

material that has the proportion of isotopes that occur 

naturally.  

Natural uranium mined from the earth contains the 

isotopes 
238

U, 
235

U and 
234

U. The majority (99.2745%) of all 

the atoms in natural uranium are 
238

U. Most of the remaining 

atoms (0.72%) are 
235

U, and slight traces (0.0055%) are 
234

U. Although all isotopes of uranium have similar 

chemical properties, each of the isotopes has significantly 

different nuclear properties. The isotope 
235

U is usually the 

desired material for use in reactors. 

A vast amount of equipments and energy are expended in 

processes that separate the isotopes of uranium. The details 

of these processes are beyond the scope of this book. The 

process results in two types of uranium, the natural uranium 

ore is 0.72 a/o 
235

U. The desired outcome of the enrichment 

process is to produce enriched uranium. Enriched uranium is 

defined as uranium in which the isotope 
235

U has a 

concentration greater than its natural value. The enrichment 

process will also result in the byproduct of depleted 

uranium. Depleted uranium,, is defined as uranium in which 
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the isotope 
235

U has a concentration less than its natural 

value. Although depleted uranium is referred to as a by-

product of the enrichment process, it does have uses in the 

nuclear field and in commercial and defense industries.  

 

2.4. Mass Defect and Binding Energy 
 

The separate laws of conservation of mass and 

conservation of energy are not applied strictly to the nuclear 

level. It is possible to convert between mass and energy. 

Instead of two separate conservation laws, a single 

conservation law states that the sum of mass and energy is 

conserved. Mass does not magically appear and disappear at 

random. A decrease in mass will be accompanied by a 

corresponding increase in energy and vice versa.  

Before going on the discussion of mass defect and 

binding energy, it is convenient to introduce a conversion 

factor derived by the mass-energy relationship from 

Einstein's Theory of Relativity. 

Einstein's famous equation relating mass and energy is   

E = mc
2
 (Eq.1.1) where c is the velocity of light                  

(c = 2.998 x 10
8
 m/sec). The energy equivalent of 1 u can be 

determined by inserting this quantity of mass into Einstein's 

equation and applying conversion factors. 

 

 E = mc
2
  

     = 1u{1.6606×10
-27

kg/1u} {2.998×10
8
m/sec}

2 

            (1N/1kg.m/sec
2
)(1J/1N.m) 

          = 1.4924×10
-10

 J{1 MeV/1.6022×10
-13

 J} 

          = 931.5 MeV 
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2.4.1. Mass defect  
 

Careful measurements have shown that the mass of a 

particular atom or isotope is always slightly less than the 

number of nucleons (sum of the individual neutrons and 

protons) of which the atom consists. The difference between 

the atomic mass of the atom and the total number of 

nucleons (A) in the nucleus is called the mass defect or mass 

excess (Δm). The mass defect can be expressed in terms of 

atomic mass units and/or in terms of energy as: 

 

     (   )     u                           2.2a 

           

    * (   )   +                                  2.2b 

 

where:     Δm = mass defect (u or MeV) 

               M (Z, N) = mass of nuclide   
  (u)  

                A = mass number              

 

In calculating the mass defect, it is important to use the full 

accuracy of mass measurements because the difference in 

mass is small compared to the mass of the atom. Rounding 

off the masses of atoms and particles to three or four 

significant digits prior to the calculation will result in a 

calculated mass defect of zero. 

 

Example:  

Calculate the mass defect for lithium-7. The mass of 
7
Li 

is 7.016003 u. 

Solution:  

Apply Eq. 2.2a                  Applying Eq. 2.2b 

Δm = 7.016003 -7              Δm = (7.016003 -7)931.5  

      = 0.016003 u                      = 14.9067945 MeV 
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2.4.2. Binding energy  
 

Binding energy is defined as the amount of energy that 

must be supplied to a nucleus to completely separate its 

nuclear particles (nucleons). It can also be understood as the 

amount of energy that would be released if the nucleus was 

formed from the separate particles.  

Since 1 u is equivalent to 931.5 MeV of energy, the 

binding energy can be calculated by the mass difference 

between the nucleus and the sum of those of the free 

nucleons, including the mass of electrons associated with 

protons.  

  (   )  {        (   )    (   )}   2.3a 

or 

  (   )  *         (   )+             2.3b 

        mp =  mass of proton (1.0072764 u) 

        mn =  mass of neutron (1.008665 u) 

        me =  mass of electron (0.000548597 u) 

   mH = mp +me = mass of hydrogen atom = (1.007825 u) 

 

Appendix II tabulates, in addition to some other usefull 

informations, the atomic weight of all elements and the mass 

defect in MeV of all important isotopes. These values can be 

used to find the atomic mass of each isotope. 

 

Example:  

Calculate the mass defect and binding energy for 

uranium-235. One uranium-235 atom has a mass of 

235.043924 u. 

 

Solution: 

Step 1: Calculate the mass defect using Equation (2.2) 
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∆m= {M(Z,N)-A}931.5 MeV  

     = (235.043924 – 235)931.5  =  40.9152 MeV 

Step 2: Use the mass defect and Equation (2.3) to calculate 

the binding energy. 

        *         (   )+          

            = {[92(1.007826 u) + (235-92)1.008665 u]                 

                            - 235.043924}931.5 

      BE = 1.91517 u ×931.5 MeV/u = 1784 MeV 

       

2.4.3. Separation energy 
 

The useful and interesting property of the binding energy 

is the neutron and proton separation energies. The neutron 

separation energy Sn is the amount of energy required to 

remove a neutron from a nucleus, XA

Z  (sometimes called the 

binding energy of the last neutron). This is equal to the 

difference in binding energies between XA

Z and XA

Z

1
. 

 

Sn = BE ( XA

Z ) – BE ( XA

Z

1
)                                       2.4  

            

Sn = {M ( XA

Z

1
) – M ( XA

Z ) + mn} c
2
                          2.5 

 

Similarly one can define proton separation energy Sp as 

the energy needed to remove a proton from a nucleus XA

Z  

(also called the binding energy of the last proton) which 

convert to another nuclide, YA

Z

1

1



  and can be calculated as 

follows.         

Sp = BE ( XA

Z ) – BE ( YA

Z

1

1



 )                                        2.6 

       

 Sp = {M ( YA

Z

1

1



 ) – M ( XA

Z ) + m (
1
H)} c

2
                    2.7 
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The Hydrogen mass appears in this equation instead of 

proton mass, since the atomic mass is m (
1
H) = mp + me. 

The neutron and proton separation energies are analogous to 

the ionization energies in atomic physics, in terms of the 

binding of the outermost valance nucleons. Just like the 

atomic ionization energies, the separation energies show 

evidence for nuclear shell structure that is similar to atomic 

shell structure.   

 

2.4.4. Binding energy per nucleon 
 

As with many other nuclear properties that will be 

discussed in the coming sections, we gain valuable clues to 

nuclear structure from a systematic study of nuclear binding 

energy. As the number of particles in a nucleus increases, 

the total binding energy also increases. The rate of increase, 

however, is not uniform. This lack of uniformity results in a 

variation in the amount of binding energy associated with 

each nucleon within the nucleus. In other wards since the 

binding energy increases more or less linearly with atomic 

mass number A, it is convenient to show  the variation of the 

average binding energy per nucleon, BE/A as function of A. 

Fig. 2.4 shows the average BE/A as plotted versus atomic 

mass number A. 

Fig. 2.4 illustrates that as the atomic mass number 

increases, the binding energy per nucleon increases almost 

linearly for light elements (except for        
      

  
 

  
 
 ), 

then rapidly for A < 60 reaches a maximum value of       

8.79 MeV at A = 56 (close to iron) and decreases to about 

7.6 MeV for A = 238. The average BE/A of most nuclei is, 

to within 10%, about 8 MeV.  

The general shape of the BE/A curve can be explained 

using the general properties of nuclear forces. Very short-
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range attractive nuclear forces that exist between nucleons 

hold the nucleus together. On the other hand, long-range 

repulsive electrostatic (coulomb) forces that exist between 

all the protons in the nucleus are forcing the nucleus apart. 

So the nuclear forces are very short range of the order of the 

diameter of one nucleon, or they saturate to pairs of 

nucleons (two protons and two neutrons) to form α-cluster. 

This is clear in light stable nuclei for A < 20 where the sharp 

rise appear to be off the curve. Those specific light stable 

nuclei are       
       

  
 

  
 
 . This is due to the fact of 

higher BE/A of     
  particle (or α-cluster) bounded in the 

nucleus and the other (A = 4n nuclei for n=1, 2 ...) stable 

nuclei for A < 20 compared to their neighbors. In other 

words, the 4n nuclei for n=1, 2, .. trend to make α-particles. 

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Binding Energy per Nucleon vs. Mass Number. 
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As the atomic number and the atomic mass number 

increase, the repulsive electrostatic forces within the nucleus 

increase due to the greater number of protons in the heavy 

elements. To overcome this increased repulsion, the 

proportion of neutrons in the nucleus must increase to 

maintain stability. This increase in the neutron-to-proton 

ratio only partially compensates for the growing proton-

proton repulsive force in the heavier, naturally occurring 

elements. Because the repulsive forces are increasing, less 

energy must be supplied, on the average to remove a 

nucleon from the nucleus. The BE/A has decreased. 

The BE/A of a nucleus is an indication of its degree of 

stability. Generally, the more stable nuclides have higher 

BE/A than the less stable ones. The increase in the BE/A as 

the atomic mass number decreases from 260 to 60 is the 

primary reason for the energy liberation in the fission 

process. In addition, the increase in the BE/A as the atomic 

mass number increases from 1 to 60 is the reason for the 

energy liberation in the fusion process, which is the opposite 

reaction of fission.  

The heaviest nuclei require only a small distortion from a 

spherical shape (small energy addition) for the relatively 

large coulomb forces forcing the two halves of the nucleus 

apart to overcome the attractive nuclear forces holding the 

two halves together. Consequently, the heaviest nuclei are 

easily fissionable compared to lighter nuclei. 

 

2.5. Mass Spectroscopy 
         

 Binding energies may be calculated if masses are 

measured accurately. One way of doing this is by using the 

techniques of mass spectroscopy. The principle of the 

method is shown in Fig. 2.5. 
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All mass spectroscopes begin with ion source region, 

which produces a beam of ionized atoms or molecules. 

Often a vapor of the material under study is bombarded with 

electrons to produce ions; in other cases, the ions can be 

formed as a result of a spark discharge between electrodes 

coated with the material. Ions emerging from the source 

have broad range of velocities, as might be expected for a 

thermal distribution, and many different masses might be 

included.  

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Schematic diagram of a mass spectrometer. 

 

A source of ions of charge q, containing various isotopes 

passes through a second region called velocity selector 

where there are uniform electric (E) and magnetic (B1) fields 

at right angles. The electric field will exert a force 

 FE = qE                                                                     2.8 

in one direction and the magnetic field will exert a force 

   FB = qυB1                                                                   2.9 

 in the opposite direction, where υ is the speed of the ions. 

By balancing these forces, ions of a specific speed υ = E/B1 
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can be selected and allowed to pass through a collimating 

slit. Ions with other velocities (shown as dashed lines) are 

deflected. The beam is then allowed to continue through a 

third region momentum selector where a second uniform 

magnetic field B2 will be exerted on the beam, then the beam 

will be bent into a circular path of radius  r , given by: 

 

               rqBm 2                                                              2.10 

  

and since q, B2 and v are fixed, particles with a fixed ratio   

q/m will bend in a path with a unique radius. Hence, isotopes 

may be separated and focused onto a detector (e.g. a 

photographic plate) with a proportional radii r.  

                      

  
rBB

E

m

q

21

                                                         2.11 

  

In the common case where B1= B2= B. 

rB

E

m

q
2

                                                             2.12a 

or      
E

rqB
m

2

                                                           2.12b         

 In practice, to achieve high accuracy, the device is used 

to measure mass differences rather than absolute values of 

mass. We could calibrate for one particular mass, and then 

determine all masses by relative measurements. The fixed 

point on the atomic mass scale is 
12

C, which is taken to be 

exactly 12.000000 u.  

To determine the mass of another atom, such as 
1
H, it 

would need to make considerable changes in E, B1and B2, 
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and it is perhaps questionable whether the calibration would 

be valid to one part in 10
6
 over such a range. It would be 

preferable to measure the smaller difference between two 

nearly equal masses. 

For example, let as set the apparatus for mass 128 and 

measure the difference between the molecular masses of 

C9H20 (nonane) and C10H8 (naphthalene). This difference is 

measured to be ∆m = 0.09390032 ± 0.00000012 u. 

Neglecting corrections for the difference in the molecular 

binding energies of the two molecules, which is of the order 

of 10
-9

 u, the mass difference can be calculated as follows:                       

        ∆m = M(C9H20) – M(C10 H8) = 12M(
1
H) – M(

12
C)   

         Thus       m(
1
H)

 
= 1/12 [

 
M(

12
C) + ∆m ]   

                                = 1.00000000 + 1/12 ∆m 

                                = 1.00782503 ± 0.00000001 u   

 

Then set the apparatus for mass 28 and determine the 

difference between C2H4 and N2: 

               ∆m = M(C2H4) – M(N2) = 2M(
12

C) +4m(
1
H) – 2M(

14
N)   

                     = 0.025152196 ± 0.00000003 u 

Then the mass of 
14

N can be found:  

M(
14

N)  =  M(
12

C)  +  2m(
1
H) - ½ ∆m  

                    = 14.00307396 ± 0.00000002 u 

This system of measuring small differences between close-

lying masses is known as the mass doublet method. 

In addition, the conventional mass spectroscopy cannot 

be used to find the masses of very short lived nuclei and in 
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these cases, the masses are determined from kinematical 

analysis of nuclear reactions. 

 

2.6. Energy Levels of Atoms 
 

The electrons that circle the nucleus move in fairly well 

defined orbits. Some of these electrons are more tightly 

bound in the atom than others. For example, only 7.38 eV is 

required to remove the outermost electron from a lead atom, 

while 88,000 eV is required to remove the innermost 

electron. The process of removing an electron from an atom 

is called ionization, and the energy required to remove the 

electron is called the ionization energy. 

In a neutral atom (number of electrons = Z), it is possible 

for the electrons to be in a variety of different orbits, each 

with a different energy level. The state of lowest energy is 

the one in which the atom is normally found and is called 

the ground state. When the atom possesses more energy than 

its ground state energy, it is said to be in an excited state. 

An atom cannot stay in the excited state for an indefinite 

period of time. An excited atom will either eventually 

transfer to a lower-energy excited state or directly to its 

ground state. This is performed by emitting a discrete bundle 

of electromagnetic energy called an x-ray. The energy of the 

x-ray will be equal to the difference between the energy 

levels of the atom and will typically range from several eV 

to 100,000 eV in magnitude.  

 

2.7. Energy Levels of the Nucleus 
 

The nucleons in the nucleus of an atom, like the electrons 

that circle the nucleus, exist in shells that correspond to 

energy states. The difference between them is that in 
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contrast to electrons, the nucleons have no center to orbit 

arroud it, as will be clarified in Chapter-7. The energy shells 

of the nucleons in the nucleus are less defined and less 

understood than those of the electrons of the atom. There is 

a state of lowest energy (the ground state) and discrete 

possible excited states for a nucleus. Where the discrete 

energy states for the electrons of an atom are measured in 

eV or keV, the energy levels of the nucleus are considerably 

greater and typically measured in MeV. 

A nucleus that is in the excited state will not remain at 

that energy level for an indefinite period. Like the electrons 

in an excited atom, the nucleons in an excited nucleus will 

make a transition towards their lowest energy configuration, 

and in doing so, emit a discrete bundle of electromagnetic 

radiation called a gamma ray (γ-ray). The only differences 

between x-rays and γ-rays are their energy levels and 

whether they are emitted from the electron shell or from the 

nucleus. 

The ground state and the excited states of a nucleus can 

be depicted in a nuclear energy-level diagram. The nuclear 

energy-level diagram consists of a stack of horizontal bars, 

one bar for each of the excited states of the nucleus. The 

vertical distance between the bar representing an excited 

state and the bar representing the ground state is 

proportional to the energy level of the excited state with 

respect to the ground state. This difference in energy 

between the ground state and the excited state is called the 

excitation energy of the excited state. The ground state of a 

nuclide has zero excitation energy. The bars for the excited 

states are labeled with their respective energy levels.        

Fig. 2. 6 is the energy level diagram for Nickel-60. 
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Figure 2.6. The energy level diagram for nickel-60. 

 

2.8. Angular Moments in the Nucleus 
 

Recall in classical mechanics, the angular momentum L 

of a particle moving with a linear momentum p at a location 

r around a reference point is:  

 

L= r × p                                                                     2.13 

 

While in quantum mechanics, as will be discussed in 

Chapter-5, in solution of Schrödinger equation in space we 

must evaluate the angular components of the wave function 

directly. The fundamental idea of the dual wave and particle 

nature of matter are expressed mathematically by means of a 

wave equation first derived by Schrödinger to describe the 

atomic and nuclear structures, degenerate energy states and 

other problems in terms of quantum numbers. 
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2.8.1. Orbital angular momentum 
 

 Since protons and neutrons move in an average field and 

so cause orbital angular momentum to build up, as will be 

seen in details in Chapter-5, the expectation value of the 

angular momentum of a nucleon is evaluated, and for 

simplicity by calculating the magnitude of the average value 

of <L
2
>, instead of <L>. 

Since the nucleus is an isolated system (no external 

torque acting on a system), then its angular momentum is 

conserved, and represented by orbital quantum number  ℓ 

with a value: 

 

<L
2
> = ħ

2
ℓ(ℓ + 1)                                                    2.14 

or 

1(L                                                     2.15 

 

with orbital quantum number restricted to the values            

ℓ = 0, 1, 2, 3.   

In addition,  2222

zyx LLLL  is a function of 

position, as shown in Fig. 2.7. 

Analogy to the atomic physics, the nuclear physics use 

the same spectroscopic notation as shown below:  

 

ℓ  value           0      1       2       3      4      5      6   

 symbol           s       p      d       f       g      h      i     

 

It is the very act of measuring one component of L that 

makes the others indeterminate; we usually choose the z-

component to be determined to get: 

 

  <Lz> = ħmℓ                                                             2.16 
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Where mℓ = 0, ±1, ±2…, ± ℓ. is the magnetic quantum 

number. Notice that:  

)1(L  zL                                        2.17  

 

 
 

Figure 2.7. The vector L rotates about the z-axis, so that Lz 

stays constant, but Lx and Ly are variable. 

 

2.8.2. Intrinsic angular momentum 
 

As in the electronic state in atom, it is required to 

introduce a new quantum number called intrinsic quantum 

number or simply spin denoted by (s) with a value s = ½ for 

the nucleon. The spin can be treated as an angular 

momentum. Thus: 

 

<s
2
>  =  ħ

2
s (s + 1)  or 1(s  ss                      2.18 

            

<sz>  =  ħms                                                              2.19    
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where    ms = ±½ is the spin quantum number. 

It is often useful to imagine the spin as a vector s with 

possible z components of value:   

 

<sz>  =  ±½ħ                                                            2.20  

                 

2.8.3. Total angular quantum momentum 
 

The bounded nucleons inside the nucleus, like electrons 

of the atom, move in a central potential with orbital angular 

momentum L and spin s will have a total angular 

momentum.           

           

j = L + s                                                                    2.21      

 

The total angular momentum j has the same behavior of 

L and s, so that:  

 

<j
2
> = ħ

2
j (j + 1) or 1(j  jj                          2.22 

 

where j is the total angular momentum quantum number, 

then it can be written in term of the vector sum of the orbital 

angular momentum and spin momentum as shown in       

Fig. 2.8, with:  

 

<jz> =   <ℓz + sz> = ħmj                                          2.23 

   

where     mj = -j, -j+1, -j+2 …, j-2, j-1, j (mj ≠ 0)  

                    = mℓ + ms = mℓ ± ½                                      2.24 

 

is the total angular quantum number.  
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Since mℓ is always integer, mj must be half-integer: 

  mj = ±1/2, ±3/2, ±5/2,……, then j also is a half integer. 

 Unlike electrons of the atom where electrons move in 

well-defined orbits with definite L and j, it is not clear that L 

and j of nucleons inside the nucleus have the same picture, 

will be described in nuclear shell model (Chapter-7).  

Fig. 2.8 showes the relationship between the three 

angular momentua, (Left) the coupling giving  j = L + ½. 

The vector L and s have definite lengths, as does j. the 

coupling L and s vectors rotate about the direction of j; in 

this coupling, the z components Lz and sz thus do not have 

definite values. The vector j rotates about the z direction so 

that jz has definite value. (Right) The similar case of              

j = L - ½. In interpreting both figures, keep in mind that all 

such representations of vectors governed by the rules of 

quantum mechanics are at best symbolic and at worst 

misleading. 

 

Figure 2.8. The coupling of orbital angular momentum L to 

spin angular momentum s giving total angular momentum j. 
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2.8.4. Nuclear angular momentum  
 

The original indication that nuclei have spin came from 

atomic spectroscopy. Many lines in atomic spectra, when 

examined with very high resolving power spectroscopes, are 

found to consist of several lines very close together. Such 

lines are said to exhibit hyperfine structure. Two sources of 

such structure, one due to the present of isotopes, the other 

has been found in spectral lines of nucleus of single isotope 

such as bismuth 
209

Bi, the explanation of the last hyperfine 

structure spectral lines, is suggested by Pauli. Just like 

nucleons inside the nucleus, the nucleus of the atom also 

spins about an axis and possesses a nuclear angular 

momentum.  

In the application of quantum mechanics to the nucleus, 

we label every nucleon (proton or neutron) with the 

corresponding quantum numbers ℓ, s, and j. The total 

angular momentum of a nucleus having (A) nucleons would 

then be the vector sum of the total angular momentums of all 

nucleons j and it is often called the intrinsic angular 

momentum or nuclear spin and is represented by the symbol 

I. It can be represented by: 

 

I = Σi ji                                                                  2.25 

  

The nuclear spin I has the same properties of the quantum 

mechanical angular momentum vectors:  

 

<I
2
> = ħ

2
I (I + 1) and Iz = mIħ                                 2.26  

 

where (mI = -I, -I+1..., I-1, +I)  
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For many applications involving angular momentum, the 

nucleus behaves as if it is a single entity with an intrinsic 

angular momentum of (I). Moreover, we observe that the 

nucleus is a single spinning particle. For this reason, the 

nuclear spin (I) and the corresponding spin quantum number 

(I) are used to describe nuclear states, which can take on 

integral or half-integral values. The rules we must follows 

are: 

            

even-A nuclei             I =  integer            

     even Z – even N              I = 0 

     odd Z – odd  N                I = integer                        

odd-A nuclei              I = odd half integer 

     even Z – odd N               I = odd half integer 

     odd Z – even N               I = odd half integer 

 

The explanation of that is based on the assumption that 

the spin angular momentum I is a vector sum of the spin and 

the orbital angular moments of the particles within the 

nucleus and that these spins are aligned with their axes 

either parallel or anti-parallel.   

 

2.9. Nuclear Magnetic Moments 
 

We know that both, the protons (having an elementary 

positive charge e) and neutrons (have no charge) are moving 

inside the nucleus. Consequently, there are charge, mass and 

current densities. As a result, magnetic dipole and electric 

quadrupole moment produced.  

Associated with the nuclear spin is a magnetic moment µ, 

which can take on any value because it is not quantized. 

This will provide additional information on the nature of 
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nuclear forces and help in selecting an appropriate nuclear 

model.  

A method known as the magnetic resonance method 

was developed, and experiment carried out depending 

essentially on resonance between the precision frequency of 

the nuclear magnet about a constant magnetic field direction 

and the frequency of an impressed high-frequency magnetic 

field. 

Just like for electrons of the atom, the nuclear magnetic 

moment of the orbital motion of a proton is expressed in 

terms of a nuclear magneton μN. 

 

μN = eħ/2mp                                                              2.27 

 

where, mp is the mass of the proton. 

For the intrinsic spin of the nucleus, introduce a nuclear g 

factor, called gyromagnatic ratio g, to relate the magnetic 

moment μ of a nucleus to its spin angular momentum I. The 

nuclear g factor is defined as the ratio of the nuclear 

magnetic moment, expressed in terms of nuclear magneton, 

to the spin angular momentum, expressed in units of ħ: 

 

g = μ/I μN                                                                 2.28 

hence 

μ/g =  I μN  = I eħ/2mp                                             2.29 

 

where μN = μB /1840  

                  = 0.505×10
-23 

ergs/gauss 

                  = 3.15245×10
-14

 MeV/T 

 

Here, μB is the Bohr magneton = 5.78838×10
-11

 MeV/T.  
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When a nucleus of magnetic moment μ is in a constant 

magnetic field B, it will presses about the direction of B 

with a frequency ƒ given by Larmor's theorem. 

  

ƒ = μB/Iħ                                                                 2.30 

 

The magnetic moment μ of a nucleus can thus be found 

by measuring Larmor frequency ƒ.  

Of very great importance in nuclear physics are the 

magnetic moments of the proton μp, neutron μn, and deuteron 

μd, their measured values are: 

 

μp =  2.792847  μN   

μn = -1.913043  μN 

μd =  0.857438  μN 

 

It is worthwhile to mention the fact that, since the nuclear 

magnetic moments are only of the order of magnitude of the 

nuclear magneton (<< Bohr magneton) is, therefore, another 

strong argument against the existence of electrons inside the 

nucleus.   

 

2.10. Nuclear Electric Quadrupole Moment  
 

Any distribution of electric charges and currents 

produces electric and magnetic fields that vary with distance 

in a characteristic fashion, the electric moment of a nucleus 

reflect the charge distribution (or shape) of the nucleus. It is 

customary to assign to the charge and current distribution an 

electromagnetic multi-pole moment: 

The 1/r
2
 electric field arises from the spherical net charge, 

assign as zeros or monopole moment. 

The 1/r
3
 electric field arises from the first or dipole moment. 
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The 1/r
4
 electric field arises from the second (quadrupole 

moment), and so on. 

We consider a classical calculation of the energy that is 

due to electric quadruple moment. Suppose the nuclear 

charge has a cylindrical symmetry about an axis along the 

nuclear spin I, Fig. 2.9. The coulomb energy at the point S1 

is: 

 

 d

r
rdrV

)(
),( 3 

                                         2.31 

 

where ρ(r) is the charge density, and d =|r1 − r|. We will 

expand this integral in a power series in 1/r1 by noting the 

expansion of 1/d in a Legendre polynomial series:  

 

 













0 11

)(cos
11

n

n

n

P
r

r

rd
                                 2.32 

 

where P0(x) = 1, P1(x) = x, P2(x) = (3x
2
 – 1)/2 … 

 

Then Eq.2.31 can be written as: 

 







0 11

11

1
),(

n
n

n

r

a

r
rV                                      2.33 

with:  
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          2.34 
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Figure 2.9. Geometry for calculating the Coulomb potential 

energy at the field point S1 due to a charge distribution ρ(r) 

on the spheroidal surface. The sketch is for r1 located along 

the z – axis. 

 

The coefficients in the expansion for the energy,          

Eq. 2.33, are recognized to be the total charge, the dipole 

(here it is equal to zero), the quadrupole, etc. In Eq.2.34, Q 

is defined to be the quadrupole moment (in unit of 10
-24

 cm
2
, 

or barns). Notice that if the charge distribution were 

spherically symmetric, <x
2
> = <y

2
> = <z

2
> = <r

2
>/3,      

Q = 0.  

We see also, Q > 0, if 3<z
2
> > <r

2
> and Q <0,              

if 3<z
2
> < <r

2
>. The corresponding shape of the nucleus in 

these two cases would be prolate or oblate spheroid, 

respectively. While for Q = 0, the shape of the nucleus 

remains sphere (see Fig. 2.10).  
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Figure 2.10. The spheroidal shapes of nuclei as indicated by 

the value of the electric quadrupole moment Q. 

 

For many nuclei, the quadrupole moment can be 

estimated from the valance nucleon that orbit near the 

nucleus surface, then we can estimate |eQ| ≤ e R0
2
A

2/3
, as 

shown in Table 2.2. 

 

Table 2.2. Some values of the spin and quadrupole 

moments. 

Nucleus                     I                         Q [10
-24

 cm
2
]  

------------------------------------------------------------------ 

     n                          1/2                             0 

        p                          1/2                             0 

      
2
H                          1                                0.00274  

      
4
He                        0                                0  

        6
Li                          1                               -0.002 

    
233

U                         5/2                             3.4 

    
235

U                         7/2                             4
 

     239
Pu                        5/2                             4.9 
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In quantum mechanics, electric quadrupole moment is 

determined with respect to the probability density |Ψ|
2
.  

 

eQ = e ∫Ψ
*
(3z

2
 – r

2
) Ψ dv                                         2.35 

 

2.11. Nuclear Parity 
 

In addition to their magnetic and electric properties, 

nuclei have certain properties which are not obviously 

physical in nature. Among them is the parity. To a good 

approximation, the wave function of a nucleus may be 

expressed as the product of a function of the space 

coordinates and a function depending only on the spin 

orientation. The motion of a nucleus is said to have even 

parity if the spatial part of its wave function is unchanged 

when the space coordinates (x, y, z) are replaced by             

(-x, -y, -z), or (r → -r) i.e., reflection of the nucleus. While 

when reflection changes the sign of the spatial part of the 

wave function, the motion of the nucleus is said to have odd 

parity. 

For example: 

 

If Ψ(r) = +Ψ(-r)   is even parity wave function 

If Ψ(r) = -Ψ(-r)    is odd parity wave function 

Ψ(x) = cos (kx)    is even parity wave function  

Ψ(x) = sin (kx)     is odd parity wave function 

V(x) = ½ kx
2 
       is even parity wave potential 

V(x) = ½kx          is odd parity wave potential  

 

 In relation to the value of the orbital angular momentum 

L, as will be discussed in Chapter 5, the parity of the energy 

state donated is by π. The parity of a state is determined by 
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the orbital angular momentum quantum number ℓ as,         

π= (−1)
ℓ
.  

A quantum state of a nucleus is defined by the parity, its 

energy and its total angular momentum of the constituent 

nucleons j written conventionally as: 

 
)1( jj                                                            2.36  

 

For example, the nucleus of mass number A with the last 

proton in a state with ℓ = 2, its parity is even, while the 

neutron in the last state with ℓ = 3 has odd parity. The parity 

of the nucleus is therefore odd. 

The electric moment and magnetic moment are also 

determined by the parity: 

 

                       (- 1)
L
     Electric moment. 

       π    =   {                                                               2.37 

                       (- 1)
L+1

  Magnetic moment.  

where:    

       L = 0 means monopole 

       L = 1 means dipole 

       L = 2 means quadrupole 

       L = 3 means octupole            etc 

 

With the following restrictions, all odd parity multipole 

momentums must vanish, while only E2 (electric 

quadrupole) & M1 (magnetic Dipole) remain. 
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Problems  
 

2-1 What happens to the atomic number and mass number 

of a nucleus when it a- emits an alpha particle, b- emits a 

positron, c- emits an electron, d- captures an electron? 

 

2-2 Which nucleus would you expect to be more stable, 

CorCLiorLi 15

6

13

6

8

3

7

3 ; ? Then what type of decay the 

unstable isotope may undergoe? 

 

2-3 Gallium occurs with two natural isotopes, 
69

Ga (60.2% 

abundant) and 
71

Ga (39.8%), having atomic weights 68.93 u 

and 70.92 u. What is the atomic weight of the element? 

 

2-4 The atomic weight of lithium is 6.941 u. It has two 

natural isotopes, 
6
Li and 

7
Li, with atomic weights of 6.015 u 

and 7.016 u. What is the relative abundance of the two 

isotopes?  

 

2-5 Calculate the total binding energy of the alpha particle 

He
++

, compare with the binding energy of the 
4
He nuclide. 

 

2-6 Calculate the mass defect and binding energy per 

nucleon for the nuclide 
40

K. 

 

2-7 The binding energy per nucleon of Mg24

12 is 8.26 MeV. 

Find its mass defect and its atomic mass. 

 

2-8 (a) Find the energy needed to remove a neutron from 

the nucleus of the calcium isotope Ca42

20 .   

(b) Find the energy needed to remove a proton from this 

nucleus. 
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(c) Why are these energies different? 

 

2-9 For the following two nuclei ZnCu 65

30

65

29 , , determine 

which one must decay to the other and what is the type of 

decay? 

 

2-10 A nuclear scientist attempts to perform experiments on 

the Fe56

26 stable nuclide. Determine the energy (in MeV) 

required to:  

(a) Remove a single neutron,  

(b) Remove a single proton,  

(c) Completely dismantle the nucleus into its individual 

components,  

(d) Fission it symmetrically into two identical lighter 

nuclides Al28

13 . [The exact masses of the Fe56

26  and Al28

13 atoms 

are 55.934942 u and 27. 981910 u, respectively.] 

  

2-11 Show that the potential energy of two protons 1.7 fm 

(the maximum range of nuclear force) apart is of the correct 

order of magnitude to account for the difference in binding 

energy between 
3
H and 

3
He. How does this result bear upon 

the question of the dependence of nuclear forces on electron 

charge? 

 

2-12 The neutron in free space decays into a proton and 

electron. What must be the minimum energy contributed by 

a neutron to a nucleus in order that the neutron does not 

decay inside the nucleus? How does this figure compare 

with the observed BE/A in stable nuclei? 

 

2-13 Calculate the binding energy of the last neutron in 
4
He 

and the last proton in 
16

O. How do these compare with BE/A 
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for these nuclei? What does this tell you about the stability 

of 
4
He relative to 

3
He, and of 

16
O relative to 

15
N?  

 

2-14 Figure 2.4 shows a plot of the average binding energy 

per nucleon BE/A vs. the mass number A. In the fission of a 

nucleus of mass number Ao (mass Mo) into two nuclei A1 

and A2 (masses M1 and M2), the energy released is:   

              Q = Moc
2
 −M1c

2
 −M2c

2
  

Express Q in terms of (BE/A) and A. Estimate Q for 

symmetric fission of a nucleus with Ao = 240. 

 

2-15 The ionization energy EI of the first three elements are:  

            Z                 Element             EI 

            1                    H                 13.6 eV 

            2                    He               24.6 eV 

            3                    Li                  5.4 eV 

(a) Explain qualitatively the change in EI from H to He, Li. 

(b) What is the second ionization energy of He that is the 

energy required to remove the second electron after the 

first one is removed? 

 

2-16 Find the total quantum numbers (mj) for p and d orbital 

angular momentum. 

 

2-17 Determine the nuclear g value for the ground state of 
1
H, 

2
H, and free neutron. What will be the value for first 

excited state of 
1
H nucleus?    

 

2-18 Give the expected spin and parity assignments for the 

ground states of the nucleus having the following nucleons 

and orbital angular momenta.  

(a) A proton in ℓ=0; (b) two protons in ℓ=1; (c) 2 protons 

and 3 neutrons in ℓ=2; (d) 3 neutrons and 3 protons in ℓ=3. 
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CHAPTER 3 
 

MODE OF RADIOACTIVE DECAY AND 

NUCLEAR REACTIONS 

 
Most atoms found in nature are stable and do not emit 

particles or energy that change form over time. Some atoms, 

however, do not have stable nuclei. These atoms emit 

radiation in order to achieve a more stable configuration.  

 

3.1. Radioactive Decay Mechanisms 
    

As mass numbers become larger, the ratio of neutrons to 

protons in the nucleus becomes larger for the stable nuclei. 

Non-stable nuclei may have an excess or deficiency of 

neutrons and undergo a transformation process known as 

beta () decay. Non-stable nuclei can also undergo a variety 

of other processes such as alpha () or neutron (n) decay 

…etc; see Fig. 2.1. As a result of these decay processes, the 

final nucleus is in a more stable or more tightly bound 

configuration. 

   

3.1.1. Natural radioactivity  
 

In 1896, the French physicist Becquerel discovered that 

crystals of a uranium salt emitted rays that were similar to  

x-rays in that they were highly penetrating, could affect a 

photographic plate, and induced electrical conductivity in 

gases. Becquerel's discovery followed in 1898 by the 

identification of two other radioactive elements, polonium 

and radium, by Pierre and Marie Curie.  
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Heavy elements, such as uranium or thorium, and their 

unstable decay chain elements emit radiation in their 

naturally occurring state. Uranium and thorium, present 

since their creation at the beginning of geological time, have 

an extremely slow rate of decay. All naturally occurring 

nuclides with atomic numbers greater than 82 are 

radioactive.  

Whenever a nucleus can attain a more stable (i.e., more 

tightly bound) configuration by emitting radiation, a 

spontaneous disintegration process known as radioactive 

decay or nuclear decay may occur. In practice, this 

"radiation" may be electromagnetic radiation, particles, or 

both.  

Detailed studies of radioactive decay and nuclear reaction 

processes have led to the formulation of useful conservation 

principles.  

 

3.1.2. Conservation principles 
 

The investigation of the fundamental constituents of 

matter and their interactions comes from the experimental 

and theoretical analysis of nuclear reactions. These reactions 

include decays of the unstable particles, natural or produced 

in nuclear reactions, and scattering experiments with or 

without production of particles. 

The laws allow the identification of particles and various 

fundamental conservation laws govern nuclear reactions, 

i.e., the determination of their masses, spins, energies, 

moments etc. 

The four principles of most interest in this module are 

discussed below.  

1- Conservation of electric charge implies that charges 

neither created nor destroyed. Single positive and 
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negative charges however, may neutralize each other. It 

is also possible for a neutral particle to produce one 

charge of each sign. 

2- Conservation of mass number does not allow a net 

change in the number of nucleons. However, the 

conversion of a proton to a neutron and vice versa is 

allowed. 

3- Conservation of mass and energy implies that the total of 

the kinetic energy and the energy equivalent of the mass 

in a system must be conserved in all decays and 

reactions. Mass can be converted to energy and energy 

can be converted to mass, but the sum of mass and 

energy must be constant. 

4- Conservation of momentum is responsible for the 

distribution of the available kinetic energy among 

product nuclei, particles, and/or radiation. The total 

momentum is the same before and after the reaction even 

though it may be distributed differently among entirely 

different nuclides and/or particles.  

The most important laws are energy-momentum 

conservation and electric charge conservation. In nuclear 

physics, other laws play an important role such as angular 

momentum conservation, lepton number, baryon number 

and isospin conservation (which will be discussed in the 

subsequent chapters). 

 

3.2. Nuclear Reactions 
 

In order to understand the analysis and mechanism of the 

nuclear radioactivity, it is essential to study the nuclear 

reactions. The quantitative aspects we will stress on are 

those of the mass and energy balance. The nuclear reactions 

may be caused by any kind of incident particle, and may 
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result in the emission of any kind of particle (proton, 

neutron, deuteron, α-particle, or even nucleus), and/or γ-ray. 

The Bohr's theory of the compound nucleus assumed 

(1936) that, a nuclear reaction takes place in two steps; first, 

the incident particle is absorbed by the initial, or target, 

nucleus to form a compound nucleus, second, the compound 

nucleus disintegrates by ejecting a particle (proton, neutron, 

α-particle, etc.) or a γ-ray, leaving the final, or product 

nucleus. He assumed also that the mode of disintegration of 

the compound nucleus is independent of the way in which 

the later is formed, and depends only on the properties of the 

compound nucleus itself, such as its energy and angular 

momentum. 

The natural or artificial radioactive decay indeed can be 

considered as a nuclear reaction process with no incident 

particles, since some atoms do not have stable nuclei. Non-

stable nuclei may have an excess or deficiency of neutrons 

and undergo a transformation process similar to that of the 

compound nucleus. 

 The great number of nuclear reactions and radioactive 

decays provide a wealth of experimental data for the field of 

nuclear spectroscopy and for the theory of nuclear structure. 

The analysis of nuclear reactions is similar to that used 

for chemical reactions except that the relativistic relation 

between mass and energy must be taken into account. 

Consider a nuclear reaction represented by the reaction: 

 

a + X → Y +b                                                             3.1 

 

Here X is the target nucleus, a is the bombarding particle, Y 

is the product nucleus and b is the product particle.  

As for all practical cases, it will be assumed that the 

target nucleus X is initially at rest, so that it has no kinetic 
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energy. Since the total energy of a particle or atom is the 

sum of the rest energy and the kinetic energy, the 

conservation of mass and energy yield:  

 

)()()( 2222 cmTcMTcMcmT bbYYXaa             3.2 

 

where ma, MX, MY, and mb represent the masses of the 

incident particle, target nucleus, product nucleus, and 

product particle, respectively, Ta, TY, and Tb represent the 

kinetic energies of the incident particle, product nucleus, and 

product particle, respectively.  

The above equation can be rearranged as: 

  
2)()( cmMmMTTT bYaXabY                        3.3 

 

Now introduce the quantity Q, which represents the 

difference between the kinetic energy of the products of the 

reaction and that of the incident particle, hence Eq.3.3, can 

be written in term of the so-called Q-value as: 

 
2)()( cmMmMTTTQ bYaXabY                     3.4 

 

The Q-value can then be determined either from the energy 

difference or from the mass difference in Eq.3.4. 

Examining Eq.3.4 shows that if the value of Q is positive, 

the kinetic energy of the products is greater than that of the 

reactants or the masses of the reactants are greater than that 

of the products; the reaction is then said to be exothermic or 

exoergic. Then in this case, the total mass of the reactants is 

greater than that of the products, which means that the 

nuclear mass or binding energy is released   as kinetic 
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energy of the final products. While, if the Q-value is 

negative (Mreactants < Mproducts or Tproducts < Rreactants), the 

reaction is endothermic or endoergic, and the initial kinetic 

energy is converted into nuclear mass or binding energy. 

Eq.3.4 is valid in any frame of reference in which we 

choose to work, let us apply them to the laboratory reference 

frame. The term TY in Eq.3.4, represent the recoil (kinetic) 

energy of the product nucleus. It is usually small and hard to 

measure, but it can be eliminated by taking into account the 

conservation of momentum. Consider that the momentum 

vector is directed along the x-axis before the collision, and 

the out-coming particle b and nuclei Y are observed at an 

angle θ and θ, respectively. Fig. 3.1 shows the basic 

geometry in the reaction plane. Conservation of linear 

momentum along and perpendicular to the beam direction 

(x-axis) gives: 

 

 coscos Yba ppp                                        3.5a 

and 

 sinsin0 Yb pp                                        3.5b 

 

where pa = ma υa, py = MYVY, pb = mb υb, and υa, VY, υb are 

the velocities of the incident particle, the recoil nucleus, and 

the ejected particle, respectively, and θ, θ are the angle of 

the direction of the ejected particle, and the direction of the 

recoil nucleus with x-axis.  
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Figure 3.1. Basic geometry for the nuclear reaction in 

laboratory reference frame. 

 

  Regarding Q as a known quantity and Ta (and therefore 

pa) as a parameter we control, Eqs.3.4 and 3.5a, b represent 

three equations in unknowns (θ, θ, Tb, and Ta) which have 

no unique solution. If we do not observe the nucleus Y, (as is 

usually case), we can eliminate TY and θ, then we can 

determine the Q-value of the reaction. If we know ma, mb, 

and Mx, and we observe the angle of out-coming particle θ, 

we have a way of determining the mass of Y. Solving the last 

three equations for Q-value, we obtain:  

 

  cos
2

11
2/1

baba

YY

a

a

Y

b

b mmTT
MM

m
T

M

m
TQ 

















     3.6  

 

    This procedure is not strictly valid, for MY also appears 

on the right side of the equation, but is usually of sufficient 

accuracy to replace the masses with the integer mass 

pa 

pb 

X 

Y 

a 

b 

φ 

θ 
o 

o 
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numbers A, especially if we measure ejected particle at angle 

θ = 90
o
 where the last term of Eq.3.6 vanishes. 

In an endothermic reaction, the energy –Q is needed to 

excite the compound nucleus sufficiently so that it will break 

up. This energy must be supplied in the form of kinetic 

energy of the incident particle. But not all of that kinetic 

energy is available for excitation because some is used to 

impart momentum to the compound nucleus; this 

momentum is then distributed among the products of the 

reaction. Consequently, for –Q to be available for excitation 

of the compound nucleus, we must supply some energy in 

addition to –Q. The minimum amount of energy needed for 

an endothermic reaction is called the threshold energy Tth 

and can be calculated easily. Since the threshold condition 

always occurs for θ = 0
o
(in this case θ = 0

o
 too), the 

products Y and b move in a common direction but still as 

separate nuclei, or we may deal with the compound nucleus, 

as follows: 

If we let, MC and VC denote the mass and velocity of the 

compound nucleus, conservation of momentum requires: 

 

a

C

a
CCCaa

M

m
VorVMm                    3.7 

 

The part of the kinetic energy of the incident particle needed 

for excitation of the compound nucleus is:  

 

 









C

a
aaCCaa

M

m
mVMmQ 1

2

1

2

1

2

1 222            3.8 

But, MC = MX + ma, and 
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











aX

X
aa

mM

M
mQ 2

2

1
                                       3.9 

Then the threshold energy is then:  

 











X

a
aath

M

m
QmT 1)(

2

1 2                                3.10 

 

The threshold energy can be determined experimentally 

and the result is used to find the value of Q. If Q > 0 

(exothermic reaction), there is no threshold condition and 

the reaction will occur even for very small energy.  

Finally, if the reaction reaches the excited state of Y, the     

Q-value equation should include the mass energy of the 

excited state: 

ex

bYaXex

EQ

cmMmMQ





0

2* )(
                            3.11 

 

where Q0 is the Q-value corresponding to the ground state of 

Y, while Qex and Eex are the excitation Q-value and energy 

above the ground state respectively, then the mass energy 

relation is: 

 

exYY EcMcM  22*
                                              3.12 

 

3.3. Types of Radioactivity 
 

A nucleus in an excited state is unstable because it can 

always undergo a transition (decay) to a lower-energy state 

of the same or different nucleus. 
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A nucleus which undergoes a transition spontaneously, 

that is, without being supplied with additional energy as in 

bombardment, is said to be radioactive. It is found 

experimentally that naturally occurring radioactive nuclides 

emit one or more of the three types of radiations,                

α- particles, β- particles, and γ-rays. 

 

3.3.1. Alpha decay (α) 
 

Alpha decay is the emission of alpha particles (helium 

nuclei) which may be represented as either 42
4

2 orHe . 

When an unstable (parent) nucleus disintegrates to a 

daughter through ejection an alpha particle, the atomic 

number is reduced by 2 and the mass number decreased by 

4, and the transition is: 

HeYX A

Z

A

Z

4

2

4

2  

                                             3.13 

 

If we assume that the parent nucleus is initially at rest, 

which is a common case, the conservation of energy 

requires: 

 

Mpc
2
 = Mdc

2
 + Td + Mαc

2
 + Tα                          3.14 

 

where Mp, Md and Mα are the masses of the parent, daughter 

and α particle respectively. Similarly, Td and Tα represent the 

kinetic energies of the daughter and of the α-particle.  

Eq.3.2 can be written as: 

 

Td + Tα = (Mp - Md - Mα) c
2 
= ∆Mc

2
 = Q         3.15 

  

Here, we use atomic masses instead of nuclear masses 

since the masses of electrons cancel. We define the 
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disintegration energy Q-value as the difference in the rest 

masses of the initial and final states and obviously equal the 

sum of the kinetic energies of the final state particles. 

Applying the law of conservation of momentum:  

Pi = Pf                                                                      3.16 

where Pi and Pf are the initial and final momentum of 

reactants. 

 Now, since the parent nucleus, in α-decay, decays from 

the rest, then the daughter nucleus and the α-particle must 

necessarily move in opposite directions to conserve 

momentum. For non-relativistic particles, the momentum 

and kinetic energies can be written as: 

 

Md υd = Mα υα or υd = Mα υα/Md                          3.17 

 

Tα=½ Mα υ
2
α, and Td=½ Md υ

2
d= (Mα/Md)Tα   3.18              

  

In almost all α-decay cases, the mass of the daughter 

nucleus is much greater than that of the α-particle. Then       

υd << υα, and consequently the kinetic energy of the 

daughter nucleus is far smaller than that of the α particle. υd 

can be eliminated by Eq. 3.17, then the expressions for Tα in 

terms of the Q-value, using Eq. 3.15 and 3.18, is: 

Q

M

M
Q

MM

M
T

d

d

d












1

1
                               3.19 

The kinetic energy of the emitted α particle cannot be 

negative, that is, Tα ≥ 0. Consequently, for α-decay to occur, 

we must have an exothermic process. 
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∆M ≥ 0,        Q ≥ 0                                                3.20 

As α-decay mainly occurs in heavy nuclei, most of the 

energy is carried off by the α-particle. The kinetic energy of 

the daughter nucleus is then obtained from Eqs. 3.15 and      

3.19. 







 T

M

M
Q

MM

M
TQT

dd

d 


                      3.21 

If we approximate the atomic masses of the nuclei by 

their mass numbers, the masses ratio can be approximated 

Mα/Md ≈ 4/(A – 4). We can then rewrite Eq.3.21 as: 

Q
A

T

Q
A

A
T

d

4

4






                                                      3.22 

It is clear from Eq.3.19 that the kinetic energy of the α-

particle in the decay is unique. Careful measurements, 

however, have revealed a fine splitting in the energies of    

α-particles emitted from radioactive material, corresponding 

to possibly different Q-values. The most energetic α-

particles are observed to be produced alone. Less energetic               

α-particles are always accompanied by the emission of 

gamma photons, i.e. the parent nucleus can transform to an 

excited state of the daughter nucleus, in which the Q-value 

will be lower by a value of the gamma energies. An example 

is uranium-234, which decays by the ejection of an alpha 

particle accompanied by the emission of a 0.068 MeV 

gamma.  

TThU  42
230

90

234

92  
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The combined kinetic energy of the daughter nucleus 

(Thorium-230) and the α-particle is designated as kinetic 

energy. The sum of the KE and the gamma energy is equal 

to the difference in mass between the original nucleus 

(Uranium-234) and the final particles (equivalent to the 

binding energy released, since ∆mc
2
= BE or Q-value). The 

alpha particle will carry off as much as 98% of the kinetic 

energy and, in most cases, can be considered to carry off all 

the kinetic energy.  

 

3.3.2. Beta decay (β)  
 

The theory of beta decay was developed by Fermi (1934) 

in analogy with the quantum theory of electromagnetic 

decay. Our concern is not the elements of this theory; rather 

we will be content to mention just one aspect of the theory, 

that concerning the statistical factor describing the 

momentum and energy distributions of the emitted β 

particles. 

Beta decay is considered to be a weak interaction since 

the interaction potential is ~ 10
-6

 that of nuclear interactions, 

which are generally regarded as strong. β-decay is the 

emission of electrons of nuclear rather than orbital origin. 

These particles are electrons that have been expelled by 

excited nuclei and may have a charge of either sign e
-
, e

+
.    

β -decay is the most common type of radioactive decay, all 

nuclides not lying in the valley of stability are unstable 

against this transition.These electrons are emitted with a 

continuous spectrum of energies, as shown in Fig. 3.2. 
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Figure 3.2. The observed differential distribution in the 

number of emitted electrons as a function of their energy. 

   

If both energy and momentum are to be conserved, a 

third type of particle, the neutrino (υ) must be involved. The 

neutrino is associated with the positive electron emission, 

and its antiparticle, the antineutrino (ῡ) is emitted with a 

negative electron. These uncharged particles have only the 

weakest interaction with matter, no charge, neglecting its 

small mass (no mass as proposed by Pauli), and travel at the 

speed of light. For all practical purposes, they pass through 

all materials with so few interactions that the energy they 

possess cannot be recovered. The neutrinos and 

antineutrinos are included here only because they carry a 

portion of the kinetic energy that would otherwise belong to 

the beta particle, and therefore, must be considered for 

energy and momentum to be conserved. Also, linear and 

angular momenta are now conserved. They are normally 

ignored since they are not significant in the context of 

nuclear reactor applications. 
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3.3.2.1.    decay: 
 

A nucleus with an over abundance of neutrons (with 

value of N/Z greater than that for stable nuclei, as shown in 

the chart of nuclides Fig. 2.2 and Fig. 3.5) can transform to a 

more stable nucleus as one excess neutron converts to a 

proton inside the nucleus and emit a negative electron 

associated with antineutrino. This kind of process is known 

as e
-
 or β

-
decay and the transformation can be denoted by: 

 

 

 eYX A

Z

A

Z 1                                              3.23 

 

If the parent nucleus decays from rest, the conservation 

of energy for electron emission will yield: 

 

Mpc
2
 =Td + Md c

2
 + Te + mec

2
 + T  + m  c

2
 

or 

       Td +Te + T  = {Mp - Md - me - m } c
2
 

 

                     = ∆Mc
2 
= Q                                      3.24 

 

where Mp, Md, me and m , are respectively, the masses of 

the parent nucleus, the daughter nucleus, the electron and the 

antineutrino.  

Similarly, Td, Te and T  represent the kinetic energies of 

the decay daughter nucleus, the electron and antineutrino, 

respectively. We see from Eq. 3.24 that electron emission 

can take place only if the disintegration energy Q is positive, 

that is, when the mass of the parent nucleus is greater than 

the sum of the masses of the decay products. In fact, 

neglecting small differences in atomic binding energies, we 

conclude that electron emission will take place if:                   
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Q = {M(A, Z) - M(A, Z + l)- m } c
2
 

 

      ≈ {M(A,Z)-M{A,Z +1)} c
2
 ≥ 0                        3.25 

  

Eq. 3.25 represents the atomic masses, including the mass of 

atomic electrons, with neglecting the small mass of the 

neutrino. Furthermore, because the daughter nucleus is much 

heavier than either the electron or the antineutrino, the small 

recoil energy of the daughter can be ignored, and for any β
-

decay we can write: 

 

Te +T  ≈ Q                                                           3.26 

 

Eq.3.26 shows clearly that, with a  in the final state, the 

energy of the electron is no longer unique. In fact, any 

continuous value 0 ≤ Te ≤ Q is kinematically allowed and the 

maximum electron energy, corresponding to T  = 0, is 

given by the endpoint value of Eq. 3.26. 

 

( Te-)max =Q                                                            3.27  

 

Pauli's postulate therefore accommodates the continuous 

energy spectrum in β
-
 decay, and simultaneously restores all 

the accepted conservation laws. 

 

3.3.2.2.   decay: 
 

Positively charged electrons (beta-plus) are known as 

positrons β
+
 (electron antiparticle). Except for sign, both β

+
 

and β
-
 are nearly identical. The positron, represented as e

+
, 

or β
+
, is ejected from the nucleus (with value of N/Z less 

than that for stable nuclei, Fig. 2.2 and 3.5), the atomic 
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number of the nucleus decreased by one and the mass 

number remains unchanged. A proton converts to a neutron 

by emission of β
+
 and neutrino . The process represented 

as: 

 

 eYX A

Z

A

Z 1                                          3.28 

  

Similar to the β
-
 decay, the disintegration energy for 

positron emission is given by:  

 

Q = (Mp – Md - me+ - m ) c
2
 

 

   = (M(A,Z) - M(A,Z-l) - 2me-m ) c
2
 

 

    ≈ (M(A,Z) - M(A,Z-l) - 2me) c
2
                      3.29 

 

Where, again, all the M (A, Z) in the last line of Eq. 3.29 

refer to full atomic weights, and Q must be positive for the 

decay to occur. 

 

3.3.2.3. Electron capture (K-capture) 
 

Nuclei having an excess of protons may capture an 

electron from one of the inner orbits, which immediately 

combines with a proton in the nucleus to form a neutron. 

This process is called electron capture (EC). The electron is 

normally captured from the innermost orbit (the K-shell), 

and, consequently, this process is sometimes called            

K-capture. This process can be represented as: 

 

 

 YeX A

Z

A

Z 1                                         3.30 
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A neutrino is formed at the same time that the neutron is 

formed and energy carried off by it serves to conserve 

momentum. Any energy that is available due to the atomic 

mass of the product being appreciably less than that of the 

parent will appear as gamma radiation. In addition, there 

will always be characteristic x-rays given off when an 

electron from one of the higher energy shells moves in to fill 

the vacancy in the K-shell. Electron capture is shown 

graphically in Fig. 3.3.  

Electron capture and positron emission result in the 

radioactive production of the same daughter product, and 

they exist as competing processes. For positron emission β
+
 

to occur, however, the mass of the daughter product must be 

less than the mass of the parent by an amount equal to at 

least twice the mass of an electron Eq.3.29. This mass 

difference between the parent and daughter is necessary to 

account for two items present in the parent but not in the 

daughter. One item is the positron ejected from the nucleus 

of the parent. The other item is that the daughter product has 

only one less orbital electron than the parent does. If this 

requirement is not met, orbital electron capture takes place 

exclusively. 

Similarly, electron capture process can take place only if: 

 

Q = (Mp + me – Md - m ) c
2
 

        

   = {M(A, Z) - M(A, Z-1)- m } c
2
 

 

    ≈ {M(A,Z)-M(A,Z-1)} c
2
 ≥ 0                           3.31 

 
 

 



88 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Orbital Electron Capture. 

 

3.3.2.4. Selection rules for beta decay 
 

For each nuclear level, there is an assignment of spin and 

parity. This information is essential for determining whether 

a transition of a particular transition between initial and final 

states is allowed according to certain selection rules of 

quantum mechanics. Also if a transition is allowed, what 

mode of decay is most likely? 

Consider a beta transition between two nuclear states of 

well defined angular momentum with the emission of, say, a 

positron and neutrino or an electron and an antineutrino. In 

this transition, the total angular momentum and the parity of 

the angular momentum states must be conserved; see Ch. 2. 

Then the angular momentum and parity are generally 

expressed in beta decay P → D + β +υ as: 

 

                                       3.32 

 

     (  )
                                                        3.33 
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Here, Lβ and Sβ = sβ + sυ are the orbital angular momentum 

and the intrinsic spin of the outgoing leptons (electron-

antineutrino or positron neutrino system). The transitions 

with Lβ = 0 are known as allowed transitions; the parity 

change is Δπβ = (-1)
Lβ = 1 or −1 corresponds to no parity 

change or parity change respectively, and so allowed 

transitions must have the same parity in initial and final 

states      . Transitions with Lβ ≠ 0 are known as 

forbidden (although they can occur).  

The magnitude Sβ can take on values of 0 and 1 which 

would correspond to the antiparallel and parallel coupling 

of the electron and neutrino spins, respectively. Thus, for 

the allowed transitions (jP - jD =L +Sβ = L + sβ + sυ), since 

the leptons have spin half, there are two cases to be 

considered; Sβ =0 or Sβ =1. The Sβ =0 transitions are known 

as Fermi (F) transitions for Low A, where the electron and 

antineutrino have “antiparallel” spins and jP - jD = 0. While 

the Sβ =1 transitions are known as Gamow-Teller (GT) 

transitions for High A, where the electron and antineutrino 

have ``parallel'' spins and jP - jD = 0 or 1. The spin changes 

since neutron number tends to be larger than protons. Even 

though we have sources produce a mixture of these two 

orientations. This is because the decay constant is governed 

by the square of a transition matrix element M, which can 

be written as a series of contributions, one for each Lβ.  

 

λβ∝|M|
2 
=|M (Lβ= 0)|

2 
+|M (Lβ= 1)|

2 
+|M (Lβ= 2)|

2 
+...   3.34 

 

Transitions with Lβ = 0, 1, 2 …are called allowed, first-

forbidden, second-forbidden…etc. The magnitude of the 

matrix element squared decreases from one order to the next 

higher one by at least a factor of 10
2
. For this reason, we are 
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interested only in the lowest order transition that is the most 

likely transition among all the allowed transitions. 

 To illustrate how the selection rules are determined, we 

consider the transition:  
 

  (  )      
 

 
 (  )           

             

To determine the combination of Lβ and sβ for the first 

transition that is allowed, we begin by noting that parity 

conservation requires Lβ to be even. Then, we see that       

Lβ = 0 plus Sβ = 1 would satisfy both Eqs. 3.32 and 3.33. 

Thus, the most likely transition is the transition designated 

as allowed, G-T. Following the same line of argument, one 

can arrive at the following assignments: 

 

 (  )     
  

 
  (  )            allowed, F 

 (½ )     
 

 
 (½ )             allowed, GT and F 

  (  )       
  

  
  (  )         first-forbidden, GT & F 

  (  )     
  

 
  (  )          second-forbidden, GT 

 

The following table lists the Δj = jP - jD and Δπ values for 

the first few values of L: 

 

Forbiddances ΔJ Δπ 

Super allowed 0
+
 → 0

+
 no 

Allowed 0, 1 no 

First forbidden 0, 1, 2 yes 

Second forbidden 1, 2, 3 no 

Third forbidden 2, 3, 4 yes 
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3.3.2.5. Parity violation 
 

The presence of neutrino in β -decay leads to a certain 

type of non-conservation of parity. C.S. Wu, in 1957, 

devised and carried some experiments to test the possibility 

of parity violation in beta decay. The basic idea of C.S. 

Wu‟s experiment is to build two sets of experimental 

arrangement for 
60

Co which are mirror images of each other. 

She aligned them in a magnetic field, so that all their spin 

vectors lined up and then let them decay, measuring the 

direction of the outgoing electron. She found that electrons 

were emitted preferentially in the direction of the spin 

vector, i.e., a clear violation of parity conservation.  

It is known that neutrinos have intrinsic spin antiparallel 

to their velocity, whereas the spin orientation of the 

antineutrino is parallel to their velocity (keeping in mind 

that υ and ῡ are different particles).  

To demonstrate parity violation or non-conserving 

property of neutrino, consider the mirror word experiment 

where a neutrino is moving toward the mirror from the left, 

Fig. 3.4. Applying the inversion symmetry operation           

(x → -x), the velocity reverses direction, while the angular 

momentum (spin) does not. Thus, on the other side of the 

mirror, we have an image of a particle moving from the 

right, but its spin is now parallel to the velocity so it has to 

be an antineutrino instead of a neutrino. 

This means that the property of υ and ῡ, namely definite 

spin direction relative to the velocity, is not compatible with 

parity conservation (symmetry under inversion). 
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Figure 3.4. Mirror reflection demonstrating of parity non-

conserving property of neutrino. 

 

3.3.3. Gamma emission (γ) 
 

Gamma radiation is a high-energy electromagnetic 

radiation that originates in the nucleus. It is emitted in the 

form of photons, discrete bundles of energy that have both 

waved and particle properties. Often a daughter nuclide is 

left in an excited state after a radioactive parent nucleus 

undergoes a transformation by alpha decay, beta decay or 

electron capture. If the excited nucleus does not break apart 

or emit another particle, it can de-excite to the lower energy 

state or ground state by emitting a high-energy photon or γ 

ray. These transformations take place within the same 

nucleus XA

Z in contrast to the β decay or α-decay processes. 

They merely represent a re-ordering of the nucleons within 

the nucleus with lowering of mass from the excited ( 2*

0cM ) 

to the lowest ( 2

0 cM ) value. 

This type of radiation does not have to occur as 

radioactive decay only, but may accompany random types of 

nuclear transmutations, including nuclear reactions, or even 

changes of elementary particles. In this general sense, we 

usually talk about nuclear radiation. 
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3.3.3.1. γ-decay 
 

The total energy balance follows from conservation of 

energy is: 

Rfi

R

ThEEor

TEcMcM








2

0

2*

0

                                     3.35 

where (Eγ) is the energy of the emitted photon, (Ei,  Ef ) is 

the initial and final energy state, respectively and (TR) is the 

kinetic energy of the recoiling nucleus.  

Linear momentum conservation, Eq.3.16, leads to: 

 

00  pp


                                                            3.36 

 

The recoil energy is very small compared to the γ energy, 

so non-relativistic expression can be used, derived from 

Eq.1.20 to find the recoil energy: 
 

2

0

2

2

0

2

2

0

22

2

0

22

0

0

2

0

2

)(

2222 cM

h

cM

E

cM

cp

cM

cp

M

p
TR


        3.37 

 

From Eq. 3.35 the γ energy can be written as: 
 

Rfi TEEh                                                  3.38 

 

The study of the emission and absorption of nuclear       

γ-rays forms an essential part of the development of nuclear 

spectroscopy. Consider, for example, a system initially in a 

state of energy Ei making a transition to a state with energy 

Ef through the absorption or emission of a photon of 

frequency ν. In such processes, we can define what is known 
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as resonant or recoilless transitions, for which    Eq.3.38 can 

be rewritten as: 
 

)( Rfi TEEh                                           3.39 

 

where "+" corresponds to emission and "–" to absorption. 

Thus, in principle, measuring υ determines the energy level 

spacing.    

The characteristic spacing of nuclear energy levels is of 

the order of 50 keV, and typical energies of nuclear γ-rays 

can therefore range from fraction to several MeV. Because 

this kind of de-excitation is electromagnetic, we expect 

lifetimes for such processes to be typically in the range     

10
-15

 to 10
-10

 sec (because of the short lifetime, with few 

exceptions only nuclei in the ground state are present on 

Earth, but they can be produced in collisions with high 

energetic particles).   

For 1 MeV photon energy and a nucleus of mass number 

A about 100, the recoil energy is only about 5 eV. Even 

though this energy is very small, see Fig. 3.5, the recoil 

nucleus shifts the γ radiation out of resonance condition 

since the natural energy line-width Г of the radiation is even 

smaller. 

Simply, every unstable energy level has a "natural" width 

Г and a lifetime η, which can be related through the 

uncertainty principle:  

 

Г ≈ ћ/η ≈ (6.6×10
-22

MeV.sec) / (η sec)  

    ≈ Uncertainty in (Ei — Ef)                                    3.40 

 

Since nuclear states are typically separated by energies in 

the MeV range, the width is small compared to state 

separations if the lifetime is greater than 10
−22

 sec. This is 
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generally the case for states decaying through the weak or 

electromagnetic interactions.  Eq. 3.40 shows that the exact 

value, of an energy level, is uncertain, and cannot be denied 

in any given transition to better than ~Г. Consequently, if 

the kinetic energy of the recoil is such that TR << Г, 

essentially Eγ = – (Ei – Ef), and resonant absorption can take 

place. On the other hand, if TR >> Г, it is impossible to 

excite the system to a higher level through resonant 

absorption within the bounds provided by the uncertainty 

relation. 

 
 

 
 

Figure 3.5. Illustration of the fact that in γ-decay process, 

the initial excited nucleus is at rest and receives a certain 

recoil energy TR, so that Eγ < Ei – Ef. 

 

For example, a typical nuclear spacing have hν > 1 MeV 

= 10
6
 eV. If we consider again a nucleus with A = 50, we 

still have The characteristic spacing Ef = Mc
2
 ≈ 5 x 10

10
 eV, 

now with the higher photon energy, the nuclear recoil 

energy is given by Eq.3.37:  

 

eV
eV

ev

Mc

h
TR 10

1052

)10(

2
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If we assume a typical lifetime of about 10
-12

 sec for a 

nuclear level, then: 

 

eV
eV 4

12

16

106.6
sec10

sec.106.6 












 

 

It is clear, therefore, that for such nuclear transitions 

TR>>Г and resonant absorption cannot occur. 

 

3.3.3.2. Decay Constants  
 

Nuclear excited states have half-lives for γ-emission 

ranging from 10
-16 

sec to > 100 years. A rough estimate of λ
γ 

can be made using semi-classical ideas. From Maxwell‟s 

equations one finds that an accelerated point charge e 

radiates electromagnetic radiation at a rate given by the 

Lamor formula: 

 

  

  
 

 

 

    

  
                                                        3.41 

 

where a is the acceleration of the charge. Suppose the 

radiating charge has a motion like the simple oscillator:  

 

x(t) =x
o 
cosωt                                                         3.42 

 

where we take    
    

    
       being the radius of 

the nucleus. From Eq. 3.42 we have: 

 

   a(t) =Rω
2

cosωt                                                       3.43 
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To get an average rate of energy radiation, we 

average (20.22) over a large number of oscillation 

cycles:  

 

.
  

  
/
   

 
 

 

      

  
(      )    

      

   
          3.44 

 

Now we assume that each photon is emitted during a time 

interval η (having the physical significance of a mean 

lifetime). Then: 

 

.
  

  
/
   

 
  

 
                                                    3.45 

 

Equating this with Eq. 4.43 gives: 

 

   
      

 

     
                                                         3.46 

 

If we apply this result to a process in atomic physics, 

namely the de-excitation of an atom by electromagnetic 

emission, we would take R ~ 10
-8

 cm and Eγ ~ 1 eV, in 

which case Eq. 3.46 gives: 

 

λγ ~10
6
 sec

−1
, or t1/2~ 7 x 10

-7
 sec 

 

On the other hand, if we apply Eq.3.46 to nuclear decay, 

where typically R ~ 5 x 10
-13

 cm, and Eγ ~ 1 Mev, we would 

obtain: 

 

λγ~ 10
15

 sec
-1

, or t1/2 ~ 3 x 10
-16

 sec 
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These results only indicate typical orders of magnitude. 

What Eq.3.46 does not explain is the wide range of values 

of the half-lives that have been observed.  

 

3.3.3.3. Selection Rules for γ-decay 
 

In quantum limits, as will be discussed in Ch. 5, each 

photon carries a definite angular momentum. The multipole 

operator of order L includes the factor     
(   ), which is 

associated with an angular momentum L. For this reason, it 

is concluded that a multipole of order L transfers at an 

angular momentum of    per photon.  

We can write down the conservation of angular 

momentum and parity for γ-decay in a form similar to    

Eqs. 3.32 and 3.33: 

 

Ii =If + Lγ                                                               3.47 

 

Notice that the orbital and spin angular momenta are 

incorporated in Lγ, playing the role of the total angular 

momentum. Since the photon has spin    the possible values 

of Lγ are 1 (corresponding to the case of zero orbital angular 

momentum), 2, 3 …For the conservation of parity, we know 

the parity of the photon depends on the value of Lγ. Similar 

to Eq.2.37, we encounter two possibilities because in photon 

emission, which is the process of electromagnetic multipole 

radiation, one can have either electric or magnetic multipole 

radiation, 

 

πγ =  (−1)
Lγ

       electric multipole 

 

           (−1)
Lγ+1

    magnetic multipole                       3.48 
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Thus we can set up the following table: 

 

Radiation Designation Lγ πγ 

electric dipole 
magnetic dipole 
electric quadrupole 
magnetic quadrupole 
electric octupole  
etc. 

E1 
M1 
E2 
M2 
E3 

1 
1 
2 
2 
3 
 

-1 
+1 
+1 
-1 
-1 
 

 

For more simplification of getting the allowed               

γ-transitions, we may rewrite the above two equations for 

angular momentum and parity selection rules as: 

 

|Ii –If| ≤ Lγ ≤ Ii + If        (no Lγ = 0)                        3.49 

 

Δ πγ = no:      (even electric, odd magnetic) 

Δ πγ = yes:     (odd electric, even magnetic)          3.50 

 

The exception to the angular momentum selection rule 

occurs when Ii =If because there are no monopole (Lγ = 0) 

transition in which a single photon is emitted. 

Similar to the case of β-decay, the decay constant can be 

expressed as a sum of contributions from each electric and 

magnetic multipole: 

 

λγ =λγ (E1) + λγ (M1) + λγ (E2) + ...                      3.51 

 

provided that each contribution is allowed by the selection 

rules. Again we are only interested in the lowest order 

allowed transition, and if both E and M transitions are 

allowed, E will dominate. Take, for example, a transition 
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between an initial state with spin and parity of 2
+ 

and a final 

state of 0
+
. This transition requires the photon parity to be 

positive, which means that for an electric multipole 

radiation Lγ would have to be even, and for a magnetic 

radiation it has to be odd. In view of the initial and final 

spins, we see that angular momentum conservation Eq. 3.49 

requires Lγ to be 2. Thus, the most likely mode of γ-decay 

for this transition is E2. A few other examples are:  
 

         

(
 

 
)
 

 (
 

 
)
 

  

(
 

 
)
 

 (
 

 
)
 

  

 

                                         

 

3.3.4. Internal conversion  
 

The usual method for an excited nucleus to go from the 

excited state to the ground state is by an emission of gamma 

radiation. However, internal conversion (IC) is another 

electromagnetic process which can occur in the nucleus and 

competes with gamma emission.  

 Alternative to gamma emission, an excited nucleus may 

interact electromagnetically with an electron in one of the 

lower atomic orbital. In this case, an excited nucleus is 

transformed to a lower energy state by ejecting an orbital 

electron from the cloud surrounding the nucleus. This 

orbital electron ejection is known as internal conversion and 

gives rise to an energetic electron. Most internal conversion 

electrons come from the K atomic shell, as these two 

electrons have the highest probability of being coupled to 

nuclear fields. However, the state in the L, M, and N shells 



101 

 

are also able to couple to nuclear fields and cause IC 

electrons from these shells. 

Internal conversion electrons are different from beta 

radiation electrons because they do not involve the 

conversion of a nucleon and are not accompanied by a 

neutrino. The lack of neutrino also gives internal conversion 

electrons discrete energy values. The conversion electron is 

ejected from the atom with kinetic energy equal to the 

gamma energy minus the binding energy of the orbital 

electron (ignoring nuclear recoil)  

 

Te =Ei − Ef − EB                                                       3.52 

      

where Ei −Ef is the energy of de-excitation, and EB is the 

binding energy of the atomic electron.  

If we denote the decay constant for internal conversion 

by λe, the total decay constant for de-excitation is: 

 

λ=λγ +λe                                                                   3.53 

 

An orbital electron then drops to a lower energy state to 

fill the vacancy, and this is accompanied by the emission of 

characteristic x-rays. 

Internal conversion is favored when the energy gap 

between nuclear levels is small, and is also the primary 

mode of de-excitation for 0
+
→ 0

+
 (i.e. E0) transitions. These 

occur where an excited nucleus has zero spin, and is thus 

unable to rid itself of energy by gamma emission. Internal 

conversion is also the predominant mode of de-excitation 

whenever the initial and final spin states are the same (but 

with other different quantum numbers).  

The tendency towards IC can be expressed by the 

internal conversion coefficient (α), which is empirically 
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determined by the ratio of the rate of conversion electrons 

(e) to the rate of gamma-ray emission (γ): 
 

   
 

 
                                                                   3.54 

 

For example, in the decay of an excited state of the 

nucleus of 
125

I, 7% of the decays emit energy as a gamma 

ray, while 93% release energy as conversion electrons. 

Therefore, this excited state of 
125

I has an internal 

conversion coefficient of α =13.6. Internal conversion 

coefficients are observed to increase for increasing atomic 

number (Z) and decreasing gamma-ray energy. 

 

3.3.5. Isomers and isomeric transition 
 

Isomeric transition commonly occurs immediately after 

particle emission; however, the nucleus may remain in an 

excited state for a measurable period of time before 

dropping to the ground state at its own characteristic rate. A 

nucleus that remains in such an excited state is known as a 

nuclear isomer because it differs in energy and behavior 

from other nuclei with the same atomic number and mass 

number. The decay of an excited nuclear isomer to a lower 

energy level is called an isomeric transition. It is also 

possible for the excited isomer to decay by some alternate 

means, for example, by beta emission. Isomeric states are 

generally specified by placing an m after A. An example of 

gamma emission accompanying particle emission is 

illustrated by the decay of nitrogen-16 below. 
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3.4. Decay Chains 
 

When an unstable nucleus decays, the resulting daughter 

nucleus is not necessarily stable. The nucleus resulting from 

the decay of a parent is often itself unstable, and will 

undergo an additional decay. This is especially common 

among the larger nuclides.  

It is possible to trace the steps of an unstable atom as it 

goes through multiple decays trying to achieve stability. The 

list of the original unstable nuclides, the nuclides that are 

involved as intermediate steps in the decay, and the final 

stable nuclide is known as the decay chain. One common 

method for stating the decay chain is to state each of the 

nuclides involved in the standard XA

Z  format. Arrows are 

used between nuclides to indicate where decays occur, with 

the type of decay indicated above the arrow and the half-life 

below the arrow. The half-life for decay will be discussed in 

Chapter-4. 

 

Example:  

Write the decay chains for rubidium 
91

Rb and actinium 
215

At. Continue the chains until a stable nuclide or a nuclide 

with a half-life greater than 1 x 10
6
 years is reached. 

Solution: 

PbTiBiAt

ZrYSrRb
dhr

207

82
min77.4

207

81
min14.2

211

83
min1.0

215

85

91

40
5.58

91

39
5.9

91

38
sec58

91

37












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3.5. Radioactive Series (Primordial Radionuclides)  
 

Radioactive sires refer to any of four independent sets of 

unstable heavy atomic nuclei that decay through a sequence 

of alpha and beta decays until a stable nucleus is achieved; 
the members of a given series having mass numbers that 

differ by jumps of 4. 

Three of the sets, the thorium series, uranium series, and 

actinium series, called natural or classical series, are headed 

by naturally occurring species of heavy unstable nuclei that 

have half-lives comparable to the age of the elements as 

shown in table 3.1. The fourth neptunium-237 (the 

4n+1series) exists only with man-made isotopes, but 

probably existed early in the life of the earth. 

The three main series decay schemes produce radon (but 

primary radon source, the longest half-life, is the uranium 

series). The series beginning with 
238

U and ending with lead-

206 is known as the 4n+2 series because all the mass 

numbers in the series are 2 greater than an integral multiple 

of 4 (e.g., 238=4×59+2, 206=4×51+2). In the thorium series 
232

Th, the mass number of each member can be expressed in 

the form 4n, while in the actinium series 
235

U, 4n+3. These 

series sometimes called by these forms. Table 3.1 shows the 

three natural series with the half-life and the mode of decay 

of each member. 

Because the rates of disintegration of the members of a 

radioactive decay series are constant, the age of rocks and 

other materials can be determined by measuring the relative 

abundances of the different members of the series. All of the 

decay series end in a stable isotope of lead, so that a rock 

containing mostly lead as compared to heavier elements 

would be very old. 
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Table 3.1. The major characteristics of the radionuclides 

that comprise the natural decay series for 
232

Th, 
235

U, 
238

U. 
 

Natural 
232

Th decay series Natural 
235

U decay series Natural 
238

U decay series 

nucli

de 

decay 

mode 

half-life 

(a=year) 

nucli

de 

decay   

mode 

half-life 

(a=year) 

nuclid

e 

decay     

mode 

half-life 

(a=year) 

232Th α 1.405×1010a 235U α 7.04·108 a 238U α 4.468·109 a 

228Ra β− 5.75 a 231Th β−
 25.52 h 234Th β− 24.10 d 

228Ac β− 6.25 h 231Pa α 32760 a 234mPa 
β− 99.84% 

IT 0.16% 
1.16 min 

228Th α 1.9116 a 227Ac 
β− 98.62% 

α 1.38% 
21.772 a 234Pa β− 6.70 h 

224Ra α 3.6319 d 227Th α 18.68 d 234U α 245500 a 

220Rn α 55.6 s 
223Fr 

β− 99.994% 

α 0.006% 
22.00 min 230Th α 75380 a 

216Po α 0.145 s 223Ra α 11.43 d 226Ra α 1602 a 

212Pb β− 10.64 h 219At 
α 97.00% 

β− 3.00% 
56 s 222Rn α 3.8235 d 

212Bi 
β− 64.06% 

α 35.94% 
60.55 min 219Rn α 3.96 s 

218Po 
α 99.98% 

β− 0.02% 
3.10 min 

212Po α 299 ns 215Bi β− 7.6 min 218At 
α 99.90% 

β− 0.10% 
1.5 s 

208Tl β− 3.053 min 215Po 
α 99.99977% 

β− 0.00023% 
1.781 ms 218Rn α 35 ms 

208Pb stable . 215At α 0.1 ms 214Pb β− 26.8 min 

   
211Pb β− 36.1 min 214Bi 

β− 99.98% 

α 0.02% 
19.9 min 

   211Bi 
α 99.724% 

β− 0.276% 
2.14 min 214Po α 0.1643 ms 

   211Po α 516 ms 210Tl β− 1.30 min 

   207Tl β− 4.77 min 210Pb β− 22.3 a 

   
207Pb . stable 210Bi 

β− 99.99987% 

α 0.00013% 
5.013 d 

   
   

210Po α 138.376 d 

   
   

206Tl β− 4.199 min 

   
   

206Pb - stable 

 

 

http://en.wikipedia.org/wiki/Uranium-238
http://en.wikipedia.org/wiki/Uranium-238
http://en.wikipedia.org/wiki/Alpha_decay
http://en.wikipedia.org/wiki/Alpha_decay
http://en.wikipedia.org/wiki/Julian_year_(astronomy)
http://en.wikipedia.org/wiki/Beta_decay
http://en.wikipedia.org/wiki/Beta_decay
http://en.wikipedia.org/wiki/Beta_decay
http://en.wikipedia.org/wiki/Beta_decay
http://en.wikipedia.org/wiki/Day
http://en.wikipedia.org/wiki/Isomeric_transition
http://en.wikipedia.org/wiki/Isomeric_transition
http://en.wikipedia.org/wiki/Minute
http://en.wikipedia.org/wiki/Hour
http://en.wikipedia.org/wiki/Second
http://en.wikipedia.org/wiki/1_E-3_s
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3.6. Predicting Type of Decay 
 

Radioactive  nuclides  tend  to  decay  in  a  way  that  

results in a daughter nuclide that lies closer to the line of 

stability. Due to this, it is possible to predict the type of 

decay that a nuclide will undergo based on its location 

relative to the line of stability on the Chart of the Nuclides. 

Fig. 3.6 illustrates the type of decay nuclides in different 

regions of the chart will typically undergo. Nuclides that are 

below and to the right of the line of stability will usually 

undergo β
-
 decay. Nuclides that are above and to the left of 

the line of stability will usually undergo either β
+
 decay or 

electron capture. Most nuclides that will undergo α decay 

are found in the upper right hand region of the chart. These 

are general rules that have many exceptions, especially in 

the region of heavy nuclides. 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

  

Figure 3.6. Types of radioactive decay relative to the line of 

stability. 
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3.7. Decay Schemes 
 

Decay schemes are widely used to give a visual 

representation of radioactive decay. A scheme for relatively 

straightforward decay is shown in Fig. 3.7 below: 

 

 
 

Figure 3.7. Decay scheme of 
3
H to the ground state of 

3
He. 

 

This scheme is for 
3
H, which decays to 

3
He with a half-

life of 12.3 years through the emission of a beta-minus 

particle with an energy of 0.0057 MeV.  

A scheme for a more complicated decay is that of 
137

Cs, 

Fig. 3.8. This isotope can decay through two beta-minus 

processes. In one, which occurs in 5% of disintegrations a 

beta-minus particle is emitted with energy of 1.17 MeV to 

produce 
137

Ba. In the second which occurs more frequently 

(in the remaining 95% of disintegrations), a beta-minus 

particle of energy 0.51 MeV is emitted to produce 
137

Ba
*
; in 

other words a barium-137 nucleus in a meta-stable state or 

excited state. The 
137

Ba
*
 then decays via isomeric transition 

with the emission of a gamma ray of energy 0.662 MeV. 
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Figure 3.8. Decay of 
137

Cs showing the fraction of β
-
 decays 

to the ground state and to the excited state of 
137

Ba, which in 

turn decays by γ-emission. 

 

The general method used for decay schemes is illustrated 

in Fig. 3.9. The energy is plotted on the vertical axis and 

atomic number on the horizontal axis - although these axes 

are rarely displayed in actual schemes. The isotope from 

which the scheme originates is displayed at the top X in the 

case above. This isotope is referred to as the parent. The 

parent looses energy when it decays and hence the products 

of the decay referred to as daughters are plotted at a lower 

energy level. 

The figure illustrates the situation for common forms of 

radioactive decay. Alpha decay is illustrated on the left 

where the mass number is reduced by 4 and the atomic 

number is reduced by 2 to produce daughter Y. To its right, 

the scheme for beta-plus decay is shown to produce daughter 

B. The situation for beta-minus decay followed by gamma 
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decay is shown on the right side of the diagram where a 

daughter C in the excited energy state is produced to decay 

to its ground state by emitting a gamma ray. 

 

 
  

Figure 3.9. Schematic diagram describing all types of 

decay. 
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Problems  
 

3-1 The following are atomic masses in units of u. 

         Electron     0.000549           Sm152

62         151.919756 

         Neutron      1.008665          Eu152

63          151.921749 

         
1
H              1.007825          Gd152

64          151.919794 

a- What is the recoil nucleus and Q-value of the reaction 
152

Eu (n, p)? 

b- What types of weak-interaction decay can occur for 
152

Eu? 

c- What is the maximum energy of the particles emitted 

in each of the processes given in (b)? 

 

3-2 Find the minimum energy in the laboratory system that 

a neutron must have in order to initiate the reaction: 

HeCMeVOn 4

2

13

6

16

8

1

0 22.2   

 

3-3 Find the minimum energy in the laboratory system that 

a proton must have in order to initiate the reaction:  

npHMeVHp 1

0

1

1

1

1

2

1

1

1 22.2   

 

3-4 Find the minimum kinetic energy in the laboratory 

system that a proton must have to initiate the reaction:  

M( N14

7 ) = 14.0031 u, M( O15

8 ) = 14.9905 u.  

nONp 1

0

15

8

14

7

1

1   

 

3-5 What minimum energy would an alpha particle need in 

order to react with a 
238

U nucleus? 

 

3-6 How much energy is released when a 
6
Li atom absorbs 

a thermal neutron in the reaction 
6
Li (n, α)

 3
H? 
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3-7 In the nuclear reaction 
27

Al (d, p)
 28

A1, deuterons are 

used with a kinetic energy of 2.10 MeV. In this experiment 

(measuring in the laboratory system), the outgoing protons 

are detected at right angles with respect to the direction of 

the incoming deuterons. If protons are detected with energy 

EP corresponding to 
28

Al in its ground state and with energy 

Ep
*
 corresponding to 

28
A1

*
 remaining in its excited state at 

1.014 MeV, show that |Ep - Ep
*
| ≠ 1.014 MeV. Explain this 

difference. 

 

3-8 Calculate the Q values for the following α-decays 

between ground-state levels of the nuclei:  

  (a) 
208

Po → 
204

Pb + α, and (b) 
230

Th → 
226

Ra + α 

What are the kinetic energies of the α-particles and of the 

nuclei in the final state if the decays proceed from rest? 

 

3-9 Show that it is essentially possible for Br80

35 to undergo 

beta decay by electron emission, positron emission and 

electron capture and find the energy released in each case. 

 

3-10  
(a) Calculate the energy released in the beta decay of 

32
P. 

(b) If a beta particle has 650 keV, how much energy does the 

antineutrino have? 

  

3-11 The A = 40 isotopes of calcium (Z = 20), potassium 

(Z= 19) and argon (Z = 18) have respective binding energies 

332.65MeV, 332.11MeV and 335.44MeV. What β decays 

are allowed between these nuclei? Specify the available 

energy Q in the final state. What peculiarity appears? 
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3-12  
(a) Calculate the Q value for K orbital-electron capture by 

the Ar37

18 nucleus, neglecting the electron binding energy.  

(b) Repeat (a), including the binding energy, 3.20 keV, of 

the K-shell electron in argon.  

(c) What becomes of the energy released as a result of this 

reaction? 

 

3-13 We give the atomic binding energy in the following 

elements: Ho163

67 =1329.604 MeV and Dy163

66 =1330.389 MeV. 

Which decay processes can occur in this particular case? 

 Knowing that: (mn - mH)c
2
 =0.782 MeV. 

 

3-14 Show that 
55

Fe, which decays by electron capture, 

cannot decay by positron emission.  

 

3-15 The isotope 
126

I can decay by EC, β
–
, and β

+
 

transitions. 

(a) Calculate the Q values for the three modes of decay to 

the ground states of the daughter nuclei. 

(b) Draw the decay scheme. 

(c) What kinds of radiation can one expect from a 
126

I 

source? 

 

3-16 Discuss the recoil energy for α, β and γ-decay. 

Calculate and compare the order of magnitude in each case 

for a nucleus with mass number A = 40, Z = 20 and an equal 

Q-value (Qα = Qβ- = Qγ = 5 MeV). In which decay process 

can one neglect this recoil energy and still have a 

satisfactory energy balance. 
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3-17 When an excited nucleus emits a gamma-ray photon, 

some of the excitation energy goes into the kinetic energy of 

the recoil of the nucleus. Fig. 2.6 shows energy levels for 

nickel-60. Calculate the recoil energy for each energy level 

and comment on its effect on the energy of the γ-photon 

emitted if the lifetime of the excited state is 10
-14

 sec. 

 

3-18 The radionuclide 
41

Ar decays by β
−
 emission to an 

excited level of 
41

K that is 1.293 MeV above the ground 

state. What is the maximum kinetic energy of the β
−
 emitted 

particle?  

 

3-19 The radioisotope 
64

Cu decays by three different 

mechanisms: β
−
 decay (39.0%), electron capture (EC) 

(43.1%) and β
+
 decay (17.4 %). The Q value for the β

−
 decay 

is 578.7 keV. The Q value for β
+
 the decay is 653.1 keV. In 

addition, there is a gamma emission (0.5% probability) at 

1.345 MeV. Sketch the energy level diagram for the decay 

scheme. 

 

3-20 For the following γ transitions, give all permitted 

multipoles and indicate which multipole might be the most 

intense in the emitted radiation. 

(a) 9/2
-
 → 5/2

- 
          (d)    4

+
  →  2

+
 

(b) 1/2
-
 → 7/2

- 
          (e)    3

+ 
  →  3

+
 

(c)  1
-
   →  2

+ 
            (f)  11/2

-
→ 3/2

+
 

 

3-21 A nucleus has the following sequence of states 

beginning with the ground state: 3/2
+
, 7/2

+
, 5/2

+
, 1/2

-
, and 

3/2
-
. Draw a level scheme showing the intense γ transitions 

likely to be emitted and indicate their multipole assignment. 
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CHAPTER 4 
 

RADIOACTIVE DECAY DYNAMIC 
 

The rate at which a sample of radioactive material 

decays is not constant. As individual atoms of the material 

decay, there are fewer of those types of atoms remaining. 

Since the rate of decay is directly proportional to the 

number of atoms, the rate of decay will decrease as the 

number of atoms decreases. 

 

4.1. Radioactive Decay Rates  

Radioactivity is the property of certain nuclides of 

spontaneously emitting particles or electromagnetic waves, 

or is the process in which an unstable atomic nucleus loses 

energy by emitting radiation in the form of particles or 

gamma radiation. This decay, or loss of energy, results in an 

atom of one type, called the parent nuclide transforming to 

an atom of a different type, called the daughter nuclide. This 

is a random process on the atomic level, in that it is 

impossible to predict when a particular atom will decay. 

However, the average behavior of a very large sample can 

be predicted accurately by using statistical methods. These 

studies have revealed that there is a certain probability that, 

in a given time interval, a certain fraction of the nuclei 

within a sample of a particular nuclide will decay. This 

probability per unit time that an atom of a nuclide will decay 

is known as the radioactive decay constant, . The units for 

the decay constant are inverse time.  
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4.2. Units of Radioactivity 

The activity (A) of a sample of any radioactive nuclide is 

the rate of decay of the nuclei of that sample. For a sample 

containing billions of atoms, this rate of decay is usually 

measured in the number of disintegrations that occur per 

second. If N is the number of nuclei present in the sample at 

a certain time, the change in number of those nuclei with 

time, rate of decay, is the activity A, and can be given by:  

dt

dN
A                                                                    4.1    

The minus sign is used to make A a positive quantity 

since dN/dt is, of course, intrinsically negative. 

In addition, the activity is the product of the decay 

constant and the number of atoms present in the sample. The 

relationship between the activity A, number of atoms N, and 

decay constant λ is given by:  

 

A = λN                                                                      4.2 

 

Since λ is a constant, the activity and the number of atoms 

are always proportional.  

Two common units to measure the activity of a substance 

are the Curie (Ci) and Becquerel (Bq). A curie is a unit of 

measure of the rate of radioactive decay equal to 3.7 x 10
10

 

disintegrations per second. This is approximately equivalent 

to the number of disintegrations that one gram of radium 
226

Ra will undergo in one second. A Becquerel, as the metric 

system, is a more fundamental unit of measure of 

radioactivity than Curie. The conversion between Curie and 

Becquerel is shown below. 
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 1 Bq     = 1    dis/sec    

1 Curie = 3.7 x 10
10

 Bq  
 

Note that the activity tells us only the number of 

disintegrations per second; it says nothing about the kind if 

radiations emitted their energies, or the effect of radiation on 

a biological system, since different radiations may give 

different effects. In the next section, some alternative units 

for measuring radiation that take into account their relative 

biological effects will be discussed.   

 

4.3. Radioactive Decay Law  
 

From the previous two basic relationships, Eq.4.1 and 

Eq. 4.2, it is possible to use calculus to derive an expression 

that can be used to calculate how the number of atoms 

present will change over time.  

 

- dN = Nλ dt                                                                               
or 

dt
N

dN
                                                            4.3 

 

This equation describes the situation for any short time 

interval, dt. To find out what happens for all periods of time, 

we simply add up what happens in each short time interval. 

In other words, we integrate the above equation. Expressing 

this more formally, we can say that for the period of time 

from t = 0 to any later time t, the number of radioactive 

nuclei will decrease from N0 to Nt, so that: 

Nt = N0 exp (-λt)                                                     4.4 
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This final expression is known as the Radioactive Decay 

Law. It tells us that the number of radioactive nuclei N0 at 

time t = 0 will decrease in an exponential fashion to Nt with 

time with the rate of decrease being controlled by the decay 

probability per unit time, decay constant λ.  

The decay constant is characteristic of individual 

radionuclide, i.e., has a different values for each. Some, like 

uranium-238, have a small value and the material, therefore, 

decays quite slowly over a long period of time. Other nuclei 

such as technetium-99m (
99

Tc
*
) are metastable, have a 

relatively large decay constant and decay far more quickly. 
The radioactive decay law is shown in graphical form in  

Fig. 4.1 for three typical radionuclides of different decay 

constants. 

The graph plots the number of radioactive nuclei at any 

time, Nt against time, t. The influence of the decay constant 

can be seen clearly.  

Since the activity A and the number of atoms N are 

always proportional, they may be used interchangeably to 

describe any given radionuclide population. Therefore, the 

following is true: 

 

At =A0 exp (-λt)                                                       4.5 

 

where: 

           At = activity present at time t 

           A0 = activity initially present 
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Figure 4.1. The influence of the decay constant. 

 

4.4. Radioactive Half-Life 
 

One of the most useful terms for estimating how quickly 

a nuclide will decay is the radioactive half-life. The 

radioactive half-life is defined as the amount of time 

required for the activity to decrease to one-half of its 

original value. A relationship between the half-life and 

decay constant can be developed from Eq.4.5. The half-life 

can be calculated by solving Eq.4.5 for the time, t, when the 

current activity, A, equals one-half the initial activity           

A = ½A0. First, solve Eq.4.5 for t: 

 



)/( 0AALn
t t                                                    4.6 

N
o

. 
o

f 
 R

a
d

io
a

ct
iv

e 
n

u
cl

ei
  

N0 

Time 

λ large 
λ medium 

λ small 
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Now if A is equal to one-half of A0, A/A0 is equal to one-

half. Substituting this ratio in the above equation yields an 

expression for t½:  

 



693.0)2ln()2/1(
2/1 

Ln
t                4.7 

 

The basic features of decay of a radionuclide sample are 

shown by the normalized graph in Fig. 4.2. 

Note that the half-life does not express how long a 

material will remain radioactive but simply the length of 

time for its radioactivity to reduce by half. Assuming an 

initial number of atoms No, the population, and 

consequently, the activity may be noted to decrease by one-

half of this value in a time of one half-life. Additional 

decreases occur so that whenever one half-life elapses; the 

number of atoms drops to one-half of what its value was at 

the beginning of that time interval. After five half-lives have 

elapsed, only 1/32, or 3.1%, of the original number of atoms 

remains. After seven half-lives, only 1/128, or 0.78%, of the 

atoms remains. The number of atoms existing after 5 half-

lives can usually be assumed to be negligible. 

Another useful term is the mean lifetime of the nuclei, 

which is given by the total time of existence of all nuclei 

divided by the number of nuclei present initially. Since the 

decay process is a statistical one, any single atom may have 

a life from zero to ∞. Hence, the mean lifetime η is given: 

 







 
00

0

0

11


  dttedtteN

N

tt

                  4.8 
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Figure 4.2. Radioactive decay as a function of time in 

units of half-life. 

 

It is also possible to consider the radioactive decay law 

from another perspective by plotting the logarithm of N 

against time. In other words from our analysis above by 

plotting the expression:  

 

Ln(N/N0) =- λt   in the form   Ln(N) = -λt + Ln(N0)     4.9 

 

Notice that this expression is simply an equation of the 

form   y = mx + c where m = -λ and c = ln(N0). As a result, 

it is the equation of a straight line of slope -λ as shown in 

Fig. 4.3. Such a plot is sometimes useful when we wish to 

consider a situation without the complication of the direct 

exponential behavior. 
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Figure 4.3. Semi-log plots of radioactive Decay. 

 

Example:  

A sample of material contains 1 gram of radium-226, 

half-life of 1620 years. 

Calculate:  

(a) The number of 
226

Ra atoms initially present 

(b) The activity of the 
226

Ra in curies 

(c) The number of 
226

Ra atoms that will remain in 12 years 

(d) The time it will take for the activity to reach 0.01 curies 

 

Solution: 

Avogadro's number: NAv = 6.023 × 10
23

atoms/g.mol 

(a) The number of atoms of 
226

Ra can be determined as 

below: 

 

  
atoms

gmolgatom

A

mN
N Av

o

21
23

107.2
226

1./10023.6



  

         

Slope = λ 

Time 

N
o
. 
o
f 

R
a
d

io
a
ct

iv
e 

N
u

cl
ei

 

  
  
  
  
  
  
  
  
(L

o
g
 S

ca
le
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(b)  First, use Equation (4.6) to calculate the decay constant: 

 

λ = 
2/1

693.0

t
= 

1620

693.0
= 4.28 × 10

-4
 year

-1 

λ = 1.36 × 10
-11

 s
-1

 

Note that the length of a year used in converting from 

'per year' to 'per second' above is 365.25 days to account for 

leap years. In addition, the reason for converting to units of 

'per second' is that the unit of radioactivity is expressed as 

the number of nuclei decaying per second. Then, using this 

value for the decay constant in Eq.4.2 we determine the 

activity:  

         

A0 = λN0 = (1.36 × 10
-11

 s
-1

)( 2.7×10
21

 atoms) 

A0 = 3.7 × 10
10 

dis/s = 1 Ci 

 

So the radioactivity of our 1 g sample of 
226

Ra is 

approximately 1 Ci. 

This is not a surprising answer since the definition of the 

Curie was originally conceived as the radioactivity of 1 g of 
226

Ra! 

(c)  The number of Radium atoms that will remain in 12 

years can be calculated from Eq.4.4 using unit of yr
-1

 for 

decay constant:  

   

Nt = 2.7×10
21

 exp (-4.28 × 10
-4

 yr
-1

 × 12 yr)   

    = 2.69 × 10
21

 atoms  

 

(d)  The time that it will take for the activity to reach 0.01 Ci 

can be determined from Eq.4.6: 
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t = -


)/( 0AALn t  =   
)10  4.28 (

1

01.0

14- 











yr

Ci

Ci
Ln

= 10760 yr  

                                                                   

If a substance contains more than one radioactive 

nuclide, the total activity is the sum of the individual 

activities of each nuclide:  

Atotal = 


n

i

iA
1

     i=1, 2, 3… n                            4.10 

 

Example 

Calculate the activity a sample of material that contained 

the following three isotopes: 

1- 1x10
6
 atoms of 

59
Fe of t1/2 = 44.51 days (λ=1.80 x 10

-7
s

-1
) 

2- 1x10
6
 atoms of 

54
Mn of t1/2 = 312.2 days (λ=2.57x10

-8
 s

-1
) 

3- 1x10
6
 atoms of 

60
Co of t1/2 = 1925 days (λ=4.17x10

-9
 s

-1
).  

 

Solution  

The initial activity of each of the nuclides would be the 

product of the number of atoms and the decay constant using 

Eq.4.2. 

For 
59

Fe A1 = N1 λ1 =   176 1080.1101  satoms =0.180 Bq 

              = 0.18/3.7 × 10
10 

= 0.049×10
-10 

Ci     

For 
54

Mn A2 = N2 λ2 =   186 1057.2101  satoms =0.0257 Bq 

              = 0.0257/3.7 × 10
10 

= 0.0069×10
-10 

Ci 

For 
60

Co A3= N3 λ3 =   196 1017.4101  satoms =0.00417 Bq 

             = 0.00417/3.7 × 10
10 

= 0.00113×10
-10 

Ci  

Atotal = A1+A2+A3 = 0.180+0.0257+0.00417 =0.20987 Bq 

 

Plotting the manner in which the activities of each of the 

three nuclides decay over time demonstrates that, initially, 

the activity of the shortest-lived nuclide (
59

Fe) dominates the 
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total activity, and then 
54

Mn dominates. After almost all of 

the iron and manganese have decayed away, the only 

contributor to activity will be the 
60

Co. A plot of this 

combined decay is shown in Fig. 4.4. 

 

 

 

 

 

 

 

    

 

 

 

 

 

             

 

Figure 4.4. Combined Decay of 
56

Fe, 
54

Mn, and 
60

Co. 

 

4.5. Specific Activity 
 

The specific activity of a radioactive source is defined as 

the activity per unit mass of the radioactive sample:  

 

gBq
M

N

m

N

mass

Activity
AS Av /..


                       4.11 

 

where m=NM/NAv is the mass of the sample in g, NAv is the 

Avogadro's number = 6.023×10
23 

nuclei/g and M is the 

molecular weight, can be replaced by the mass number A for 
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the pure radioactive isotope. In practice, using the atomic 

mass number A in place of M usually gives sufficient 

accuracy, then in terms of half life and mass number     

Eq.4.11 gives: 

 

gBq
AtA

AS /
1017.410023.6

..
2/1

2323 






                 4.12 

 

If t1/2 is in seconds, this formula gives the specific activity in 

Bq.g
–1

. 

The fact that 
226

Ra has unit specific activity in terms of 

Ci g
–1

, as been shown in the first example, can be used in 

place of Eq. 4.12 to find SA for other radionuclides. 

Compared with 
226

Ra, a nuclide of shorter half-life and 

smaller atomic mass number A will have, in direct 

proportion, a higher specific activity than 
226

Ra. The specific 

activity of a nuclide of half-life (expressed in years) t1/2 (y) 

and atomic mass number A is therefore given by: 

 

gCi
Ayearst

years
AS /

2261620
..

2/1

                                   4.13 

 

4.6. Production of Radioactive Isotopes 
 

A production of radioactive isotopes has a wide range of 

applications, in medicine, industries, agriculture…, if stable 

(non-radioactive) nuclei are bombarded with alpha, beta, 

neutron, etc., the particles are frequently captured in the 

nuclei and new isotopes result. Most of the isotopes formed 

in this manner have excess energy and are thus radioactive. 

This is a frequent phenomenon in nuclear reactor cores or an 
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accelerator, called activation analysis, where structural 

materials are subject to high levels of radiation. 

Suppose that a sample of stable nuclei is bombarded 

using a projectile that can induce transmutations at a given 

rate of R atoms/sec for a time interval (0, T) and so forms 

radioactive isotope that decay again with a decay constant λ. 

The law, describing the change of the number of elements 

dNt/dt, during radioactive production, t < T, is a balance 

between the production rate R and the decay activity –λNt, 

or: 

NR
dt

dN t                                                          4.14 

 

This equation (for constant formation rate R) can be 

rewritten as: 

  

dt
NR

NRd









 )(
                                                4.15 

 

Integrating this differential equation, with the time at which 

the irradiation starts, N0 (at t = 0) = 0 atoms, one obtains: 

  Tte
R

N t

t   ,1 


                                     4.16 

 

Equation 4.16 can be used to calculate the values of the 

amount of the isotope present at different times of 

activation. As the time increases, the exponential term 

approaches zero, and the number of atoms will approach R/λ 

or the activity At = λNt will approach R (i.e. saturation). The 

corresponding results for the activity At and dNt/dt = e
-λt

 is 

given in Fig. 4.5. 
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Here, it becomes clear that activity λNt and the quantity 

dNt/dt are completely different: the activity grows to an 

almost constant value, approaching saturation near At ≈ R 

whereas dNt/dt approaches the value of zero. 

After irradiation during t = 3t1/2, 4t1/2 the number of 

radioactive elements formed is 0.875 and 0.938, respectively 

of the maximal number (when t →∞). Therefore, in practice, 

irradiations time T should not last longer than 3 to 4 half-life 

periods.  

For t > T, the governing equation is Eq. 4.14 without the 

source term. The solution is: 

 

  Ttee
R

tN TtT   ,1)( )(


                         4.17     

   

Fig. 4.5 also shows the activity A(t), after production, 

undergoes an exponential decay. 

 

 
 

Figure 4.5. Time variation of the activity of a radioisotope 

produced at a constant rate R for a time interval of T after 

which the system is left to decay. 
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4.7. Successive Radioactive Transformations 
 

In the more applied situations, the naturally radioactive 

nuclides form three series. The thorium 
232

Th series, 

uranium 
238

U
 
series, and actinium 

235
U series, these series 

are headed by naturally occurring species of heavy unstable 

nuclei that have half-lives comparable to the age of the 

elements; Table 3.1 shows the major characteristics of these 

series. In the study of radioactive series, it is important to 

know the number of atoms of each member of the series as a 

function of time. The answer to a problem of this kind can 

be obtained by solving a system of differential equations. 

Consider the case of a three-member chain:  
 

stableNNN 321

21 

              
 

where, λ
1 

and λ
2 

are the decay constants of the parent (N1) 

and the daughter (N2), respectively.  

The governing equations are: 

  

ctN
dt

tdN

btNtN
dt

tdN

atN
dt

tdN

)(
)(

)()(
)(

)(
)(

22

3

2211
2

11
1













             4.18 

 

The details of the solution of this system of equations 

depend on the initial condition, the general case is when the 

three nuclides have N10, N20, N30 number of atoms at time    
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(t = 0). The number of atoms N1, Eq.4.18a, can be written 

down immediately: 

 
t

eNtN 1

101 )(


                                                      4.19  

 

This expression for N1(t) is inserted into Eq.4.18b, then 

multiplied by the integrating factor 
t

e 2  and taking its 

integration to get: 

 

CeNetN
tt





 )(

12

1
102

122)(





 

 

where C is a constant of integration, which is obtained by 

inserting the initial value of number of atoms at t = 0, N20, 

and inserting into the above equation to get: 

 

ttt
eNeeNtN 221

20

12

1
102 )()(





 



           4.20 

  

The number of atoms of the third specie is found by 

inserting this expression for N2(t) into Eq.4.18c and 

integrating it with respect to time, gives: 

 

DeNeNNtN
tt

















 12

12

2
1020

12

1
103 )(










         4.21 

 

where D is an integration constant, determined by the 

condition N3(t) = N30 at     t = 0.  

This condition gives:  

 D = N30 + N20 + N10. and when inserted into Eq.4.21, the 

result is: 
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














 ttt
eeNeNNtN 122

12

2

12

1
1020303 1)1()(










 4.22 

 

The special case of this system is that in which only 

radioactive atoms of the first specie N10 are present initially, 

most often in production of radioisotopes. In this case, the 

constants N20 and N30 are both equal to zero, and the 

solution for N2(t) and N3(t) reduce to: 

)()( 21

12

1
102

tt
eeNtN





 



                                 4.23 








 









2112

21
103

21 11
)(



  tt
ee

NtN                     4.24 

One should notice from Eq.4.18 that the sum of these 

three differential equations is zero. This means that N1(t) + 

N2(t) + N3(t) = constant for any time t. We also know from 

our initial conditions that this constant must be N10. One can 

use this information to find N3(t) given N1(t) and N2(t), or 

use this as a check that the last solutions are indeed correct. 

The amount of the successive radioactive daughters, N2 

in Eq.4.23 is zero at time t=0 and at t=∞ while N3 in Eq.4.24 

is zero at time t=0 and N10 at t=∞. As the chain decay starts, 

the amount of these daughters increases with time in a 

fashion that at some intermediate time, their amounts and 

hence their activities will pass through a maximum value. 

The time of maximum activity of daughters (tmax) can be 

calculated simply by equating the differentiation of Eqs.4.23 

and 4.24 to zero, i.e. dNi/dt=0, where i=2, 3…. 
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4.8. Radioactive Equilibrium 
 

Radioactive equilibrium exists when a radioactive 

nuclide is decaying at the same rate at which it is being 

produced. Since the production rate and decay rate are equal, 

the number of atoms present remains constant over time. 

Mathematically, it is the condition that the derivative of a 

function with respect to time is equal to zero. When applied 

to the set of Eq.4.18 we get: 

 

λ1N1 = λ2N2 = λ3N3 = …                                4.25 

 

Eqs.4.19, 4.23, 4.24 are known as the Bateman equations. 

One can use them to analyze situations when the decay 

constants λ
1 

and λ
2 

take on different relative values. We 

consider three such scenarios, the case where the parent is 

short-lived, λ
1 

>> λ
2, the opposite case where the parent is 

long-lived, λ
1 
< λ

2
 and, λ

1 
<< λ

2. 

 

4.8.1. Series decay with short-lived parent 
  

In this case, one expects the parent to decay quickly and 

the daughter to build up quickly. The daughter then decays 

more slowly which means that the granddaughter will build 

up slowly, eventually approaching the initial number of the 

parent. Fig. 4.6 shows schematically the behavior of the 

three isotopes. The initial values of N2(t) and N3(t) can be 

readily deduced from an examination of Eq.4.23 and 4.24. 

For a time t >> 1/λ1, one can neglect the first exponential in 

Eq.4.23, 
t

e 1 →0: 



132 

 

t
eNtN 2

21

1
102 )(





 


                                      4.26 

 

 

Figure 4.6. Schematic diagram of time variation of the 

three-member decay chain for the case λ1 >> λ2. 

 

4.8.2. Series decay with long-lived parent  
 

When λ
1
< λ

2
, we expect the parent to decay slowly so the 

daughter and granddaughter will build up slowly. Since the 

daughter decays quickly, the long-time behavior of the 

daughter follows that of the parent. Fig. 4.7 shows the 

general behavior. In this case, for a time t >> 1/λ2, one can 

neglect the second exponential in Eq.4.23 (
t

e 2 →0); this 

situation is known as transient equilibrium, to get: 

 

t
eNtN 1

12

1
102 )(





 


                                         4.27 

 

Accordingly, the activity relationship will be: 
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12

2

1

2








A

A
                                                        4.28 

 

The second interesting case is the secular equilibrium, 

i.e., of a very long-lived parent, λ1 << λ2. The parent decays 

at an essentially constant rate, for all practical times t
e 1  ≈ 1 

and Eq.4.23 reduced to: 

 

)1()( 2

2

1
102

t
eNtN





 
                                     4.29 

 

Fig. 4.8 shows the general behavior of variation number 

of atoms of the three nuclides, and an example, clarifying 

the activities, of the case t1/2(1) = 8 h and t1/2(2) = 0.8 h is 

given in Fig. 4.9.  

 

 
 

Figure 4.7. Schematic diagram of time variation of the 

three-member decay chain for the case λ1 < λ2. 

t 
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Figure 4.8. Time variation of the three-member decay 

chain, case λ1<<λ2. 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. Transient equilibrium (a) Daughter activity 

growing in a freshly purified parent, (b)Activity of parent 

(t1/2 =8 h), (c)Total activity of an initially pure parent 

fraction, (d)Decay of freshly isolated daughter fractions   

(t1/2 =0.8 h), and (e)Total daughter activity in  

parent-plus-daughter fractions. 
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The last interesting case is the situation where λ1 ≈ 0, or 

λ1 <<< λ2, then N2(t) = N10 and consequently the activities: 

 

A2(t) = A10 or A2(t)/A10 = 1                                 4.30 

 

{i.e. A1(t)=A10 almost constant} since from Eq.4.29 at a time 

t >> t1/2(daughter), 02 
 t

e
 , and we approach again secular 

equilibrium. In this case, we reach equilibrium, as shown in 

Fig. 4.10. While at a short-time t     t1/2(daughter), the 

parent   behaves as a constant productive of the daughter. 

 

 
 

Figure 4.10. Activity curve for the secular equilibrium as 

λ1 ≈ 0. 

 

4.9. Units of Measuring Radiation 
 

To understand the effect of radiation on the environment 

and living tissues, The knowledge of the units of measuring 

radiation, which are exposure and dose, must be taken into 

account. 

The most important interactions of radiation with matter 

are with electrons of atoms that cause the atoms to separate 
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into ions, this ionization may be direct (by interaction of α or 

β particles) or indirect by γ ray.  

 

4.9.1. Exposure and exposure rate 
 

The unit of exposure depends on the concept of γ ray 

exposure, and it is a quantity, which is roughly analogous to 

the strength of an electric field created by a point charge, 

defined only for sources of X-ray or γ ray. 

The basic unit of exposure is defined in terms of the 

charge dQ due to the ionization created by the secondary 

electrons (electrons and positrons) formed within a volume 

element of air of mass dm, when these secondary electrons 

are completely stopped in air. The exposure value X is then 

given by: 

dm

dQ
X                                                                   4.31 

 

The SI unit is the coulomb per kilogram (C/kg). The 

historical unit has been the roentgen (R), defined as the 

exposure which results in the generation of one electrostatic 

unit of charge of either sign per 0.001293 g (1 cm
3
 at 

standard temperature and pressure STP) of air. Thus: 

 

  kgC
kg

C

g

esu
R /1058.2

10293.1

1033.3

001293.0

1
1 4

6

10










     4.32 

 

Then the number of ion pairs produced by one roentgen per 

kg is given by: 

 

15

19

4

1061.1
10602.1

/1058.2

arg

arg











C

kgC

ecelectron

echtotal
ion pair / kg,  
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and because the average energy required to produce an ion 

pair in air is about 34 eV or 5.45×10
-18

 J, then the absorbed 

energy in air is equivalent to exposure of one roentgen: 

 

1R = ( ion pairs)×(energy/ion pair)  

     

     = 1.61×10
15

×5.45×10
-18

=0.0088 J/kg                 4.33 

 

Similarly, the absorbed energy in living tissue exposed 

to 1R = 0.0096 J/kg. 

The γ ray exposure is often of interest in gamma ray 

dosimetry. Therefore, it is convenient to calculate the 

exposure rate at a known distance from a point radioisotope 

source. Assuming that the yield per disintegration of x- and 

γ-rays is accurately known for the radioisotope of interest, 

the exposure rate )(X , exposure per unit activity of the 

source at a known distance can be simply expressed under 

the following conditions (R/h):  

 

1- The source is sufficiently small so that spherical 

geometry holds (i.e. the photon flux diminishes as 1/d
2
, 

where d is the distance to the source (cm). 

2- No attenuation of the rays takes place in the air or other 

material between the source and measuring point. Only 

photons passing directly from the source to the 

measuring point contribute to the exposure, and any 

gamma rays scattered in surrounding materials may be 

neglected. 

 

2d

A
X 
                                                              4.34 
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where A is the activity of the source (mCi) and           

Гδ,(R.h
-1

.cm
2
.mCi

-1
) is the exposure rate constant for the 

specific radioisotope of interest, defined as the exposure rate 

in R/h at 1 cm from a 1 mCi point source. The subscript δ 

implies that all X- and γ-rays energies must be above an 

energy δ.  

An empirical formula, which may be used to calculate Гδ, is: 

Гδ =6× fγ × E   at 1 foot                                        4.35 

Here E is the energy of the emitted photons in MeV and fγ is 

the fraction of decays resulting in photons with energy of E. 

It should be noted that this formula and the gamma constants 

are for exposure rates from gammas and x-rays only. Any 

dose calculations would also have to include the 

contribution from any particulate radiation that may be 

emitted. Table 4.1 lists the values of Гδ for particular 

radioisotopes. 

Table 4.1. Exposure rate constant for some common 

radioisotope gamma ray sources. 

 

             Nuclide                                      Гδ    

          Antimony-124                              9.8 

           Cesium-137                                 3.3 

           Cobalt-57                                    0.9 

           Cobalt-60                                  13.2 

           Iodine-125                                   0.7 

           Iodine-131                                   2.2 

           Manganese-54                             4.7 

           Radium-226                                8.25 

           Sodium-22                                12.0 

           Sodium-24                                18.4 

           Zinc-65                                       2.7 
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4.9.2. Absorbed dose 
 

Energy is deposited in the absorber when radiation 

interacts with it. It is usually quite a small amount of energy 

but energy nonetheless. The quantity that is measured is 

called the Absorbed Dose and it is of relevance to all types 

of radiation, such as X- or gamma-rays, alpha- or beta-

particles, etc…. 

If two different materials are subjected to the same 

particles or γ ray exposure, they will in general absorb 

different amounts of energy. Because many important 

physical phenomena and chemical reactions would be 

expected to change as the energy absorbed per unit mass of 

the material chages. Then the absorbed dose D is defined as 

"the energy absorbed from any type of radiation (particles 

or photons) per unit mass of the absorber". The historical 

unit of absorbed dose has been the "rad", defined as 100 

ergs/g or 0.01 J/kg. Because the exposure to one roentgen 

will cause absorption of energy equal 0.0088 J/kg in air 

(Eq.4.31) and 0.0096 J/kg in living tissue, then the dose of: 

 

1R ≡ 0.0088/0.01 = 0.88 rad in air                         4.36a 

And  

1R ≡ 0.0096/0.01 = 0.96 rad in living tissue         4.36b 

 

The rad unit now is replaced by its SI equivalent, the gray 

(symbol Gy) defined as 1 J/kg. The two units are therefore 

related: 

     

1 Gy = 100 rad                                                         4.37 

 

 

 



140 

 

4.9.3. Dose equivalent and dose effective 
 

It has been found that the effects of absorption of equal 

amount of energy per unit mass (absorbed dose) deposited in 

the form of heavy charged, uncharged particles, electrons or 

photons on living organism does not guarantee the same 

biological effect. For example, the absorption dose of 0.01 

Gy from neutrons create biological damages equivalent to 

the damage created by a dose of 0.1 Gy from γ ray. 

Concepts of dose equivalent and dose effective have 

therefore been introduced to more adequately quantify the 

probable biological effect, living matter - human tissue for 

example, of a given radiation exposure. These quantities 

include the dose equivalent, H, and the dose effective, E.  

The dose equivalent is based on estimates of the 

ionization capability of the different types of radiation which 

are called Radiation Weighting Factors (WR), previously 

called quality factor (Q) such that: 

  

H = WR D                                                               4.38 

 

The Radiation Weighting Factors (WR) is used to 

compare the biological damage producing potential of 

various types of radiation, given equal absorbed dose. The 

effectiveness of radiation in producing damage is related to 

the energy loss of the radiation per unit path length. The 

term used to express this is Linear Energy Transfer (LET). 

Generally, the greater the LET in tissue, the more effective 

the radiation is in producing damage. The radiation 

weighting factors (WR) for radiations frequently encountered 

are shown Table 4.2: 
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Table 4.2. The quality factors for different radiation types. 

 

 

The dose effective includes WR as well as estimates of the 

sensitivity of different living tissues called Tissue Weighting 

Factors (WT), such that: 

 

ED = Σ WT H = Σ WT WR H                              4.39 

 

where the summation, Σ, is over all the tissue types 

involved. The tissue weighting factors (WT) for different 

living tissues are tabulated in Table 4.3:  

 

 

 

Radiation Type and 

Energy Range 

Radiation 

Weighting Factor, W
R
 

X- and γ-rays, all energies  1  

Electrons, positrons and   

muons,  all energies 

1 

Neutrons:   

< 10 keV  5  

10 keV to 100 keV  10  

> 100 keV to 2 MeV  20  

> 2 MeV to 20 MeV  10  

> 20 MeV  5  

Protons,(other than recoil 

protons)  and energy > 2 MeV, 

2-5 

Α particles, fission fragments, 

heavy nuclei  

20 
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Table 4.3. The tissue weighting factors (WT) for different 

living tissues. 

 

Tissue Tissue Weighting 

Factor W
T
 

Gonads 0.20 

Red bone marrow 0.12 

Colon 0.12 

Lung 0.12 

Stomach 0.12 

Bladder 0.05 

Breast 0.05 

Liver 0.05 

Thyroid, Bone 

surfaces 

0.01 

Remainder 0.05 

 

The rem is a historical unit of both the dose equivalent 

and the dose effective. While the SI unit for both is the 

Sievert (Sv), with the following relation:  

 

1 Sv = 100 rem.                                                        4.40                                                                                               

 

The units used for H and ED depend on the 

corresponding units of absorbed dose D in Eq. 4.38. If D 

expressed in rad, H will be in rem, while if D is in Gy, H is 

in Sv. Table 4.4 shows the relationships between all 

radiation measurements.  

Dose equivalent determinations for internally deposited 

radioactive materials also take into account other factors 
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such as the non-uniform distribution of some radionuclides 

(for example, I-125 in the thyroid).  

 

Table 4.4. The dosimetric quantities and relationships. 

Quantity  Definition  New 

units  

Old 

Units  

Exposure  Charge per unit mass of 

air  

1R = 2.58 x 10
-4

C/kg  

---  Roentgen  

(R)  

Absorbed 

dose to 

tissue T 

from 

radiation of 

type R  

D
T,R

 

Energy of radiation R 

absorbed per unit mass 

of tissue T  

1 rad = 100 ergs/g  

1 Gy = 1 joule/kg  

1 Gy = 100 rads  

gray  

(Gy)  

Radiation 

absorbed 

dose  

(rad)  

Dose 

Equivalent 

to tissue T  

H
T 

 

Sum of contributions of 

dose to T from different 

radiation types, each 

multiplied by the 

radiation weighting 

factor (w
R
)  

H
T 

= Σ
R 

w
R 

D
T,R

 

Sievert  

(Sv)  

Roentgen 

equivalen

t man  

(rem)  

Dose 

Effective  

ED  

Sum of equivalent 

doses to organs and 

tissues exposed, each 

multiplied by the 

appropriate tissue 

weighting factor (w
T
)  

ED = Σ
T 

w
T 

H
T
 

Sievert  

(Sv)  

rem  
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Guidelines for radiation exposure limits to persons are 

quoted in units of dose equivalent in order to place 

exposures to different types and energies of radiation on a 

common basis. The dosimetric quantities and the 

relationships between units are concluded in Table 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



145 

 

Problems 
 

4-1. How many atoms of 
32

P (t1/2=14.3 d) are there in a 5 

mCi source? 

 

4-2. How many grams are there in a 1.16 MBq source of  

(a) 
24

Na? t1/2 = 14.95 h 

(b) 
238

U? t1/2 = 4.5×10
9
 y 

 

4-3. The activity of a radioisotope is found to decrease by 

30% in 1 wk. What are the values of its 

(a) Decay constant 

(b) Half-life 

(c) Mean life? 

 

4-4. What percentage of the original activity of a 

radionuclide remains after 

(a) 5 half-lives 

(b) 10 half-lives? 

 

4-5. The activity A of a sample of an unknown radionuclide 

is measured at hourly intervals. The results, in MBq are 

80.5, 36.2, 16.3, 7.3, and 3.3. Find the half-life of the 

radionuclide in the following way. First, show that, in 

general ln(A/Ao)=-λt, second, plot ln(A/Ao) verses t and find λ 

from the resulting curve, then calculate t1/2 from λ. 

   

4-6. The isotope 
132

I decays by β
–
 emission into stable 

132
Xe 

with a half-life of 2.3 h. 

(a) How long it will take for 7/8 of the original 
132

I atoms to 

decay?  

(b) How long it will take for a sample of 
132

I to lose 95% of 

its activity? 
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4-7. Compute the specific activity of the following isotopes: 

(a) 
238

U, t1/2 = 4.47×10
9
 yr 

(b) 
90

Sr, t1/2 = 28.5 yr 

(c) 
3
H,   t1/2 = 12.3 yr 

 

4-8. 59
Fe has a half-life of 45.53 d. 

(a) What is the mean life of a 
59

Fe atom? 

(b) Calculate the specific activity of 
59

Fe. 

(c) How many atoms are there in a 10-mCi source of 
59

Fe? 

 

4-9. The half-life of 
210

Po is 138 days. What mass of 
210

Po is 

needed for a 10 mCi source? 

 

4-10. At time t = 0 a sample consists of 2 Ci of 
90

Sr and 8 Ci 

of 
90

Y. 

(a) What will be the activity of the sample after 90 h? 

(b) At what time will the 
90

Y activity be equal to 3 Ci? 

 

4-11. A sample contains 1 mCi of 
191

Os at time t = 0. The 

isotope decays by β
–
 emission into metastable 

191m
Ir, which 

then decays by γ emission into 
191

Ir. The decay and half-

lives can be represented by writing: 

      IrIrOs m

days

191

77

sec94.4

191

77

4.15

191

76 
 

 

(a) How many grams of 
191

Os are present at t = 0? 

(b) How many millicuries of 
191m

Ir are present at t = 25 day?  

(c) How many atoms of 
191m

Ir decay between t = 100 sec and 

t = 102 sec?  

(d) How many atoms of 
191m

Ir decay between t = 30 day and 

t = 40 day? 
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4-12. Under the transient condition (λ
1
< λ

2
), illustrated in 

Fig. 4.7, the total activity also reaches a maximum at a time 

earlier than that of the maximum daughter activity.  

(a) Find the time at which the daughter activity is largest 

(by differentiation of Eq.4.23).  

(b) Prove that the total activity is largest at the earlier time,

2

121

2

2

12 2
ln

1





 
t , for maximum A1 + A2. 

(c) Similar to Fig. 4.7, draw the activities A1, A2 and A1+A2 

as a function of time. 

 

4-13. Repeat problem 4-12 for the second case of 

equilibrium (secular equilibirium) (λ
1
<< λ

2
). 

4-14. A rock sample contains 1.0 mg of 
206

Po and 4.0 mg of 
238

U whose half-life is 4.47×10
9
 years. How long ago was 

the rock formed? 

 

4-15. The relative radiocarbon activity in a piece of 

charcoal from the remains of ancient campfire is 0.18 that of 

a contemporary specimen. How long ago did the fire occur? 

 

4-16. A 6.2 mg sample of 
90

Sr is in secular equilibrium with 

its daughter 
90

Y. 

(a) How many Bq of 
90

Sr are present? 

(b) How many Bq of 
90

Y are present? 

(c) What is the mass of 
90

Y? 

(d) What will the activity of the 
90

Y be after 100 yr? 

 

4-17. In a measurement of a mineral sample, it is found that 

the three nuclides 
214

Bi, 
214

Po and 
210

Pb, belong to the 
238

U 

decay series, in a radioactive equilibrium. Write down the 

decay Scheme of each isotope. If the sample contains 1.0 g 
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of 
210

Pb, what are the masses of 
238

U, 
214

Bi and 
214

Po in the 

sample? Refer to Table 3.1. 

 

4-18. (a) Estimate the specific gamma-ray constant for 
137

Cs.  

(b) Estimate the exposure rate at a distance of 1.7 m from a 

100-mCi point source of 
137

Cs. 

 

4-19. Repeat problem 4-18 for 
22

Na of two gamma energies, 

1.274 MeV with fraction of decay 100% and 0.511 MeV 

with 180% fraction of decay. 

 

4-20.   

(a) What is the average absorbed dose in a 40-cm
3
 region of 

a body organ (density = 0.93 g cm
–3

) that absorbs 3×10
5
 

MeV of energy from a radiation field? 

(b) If the energy is deposited by electron and neutron of 

energy 50 keV, what is the dose equivalent according to 

Table 4.2? 

(c) Express the answers to (a) and (b) in rads and rems as 

well as Gy and Sv. 

 

4-21. A portion of the body receives 0.15 mGy from 

radiation with a quality factor Q = 6 and 0.22 mGy from 

radiation with Q = 10.  

(a) What is the total dose? 

(b) What is the total dose equivalent? 

 

4-22. A beam of X rays produces 4 esu of charge per second 

in 0.08 g of air. What is the exposure rate in 

(a) mR.s
–1

? 

(b) SI units? 
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4-23. If all of the ion pairs are collected in the previous 

problem (4-22), what will be the current? 

 

4-24. Calculate the effective dose to an individual who has 

received the following exposures:  

5 mGy alpha to the lung  

10 mGy thermal neutron, to the skin  

5 mGy gamma, whole body  

100 mGy beta to the thyroid. 
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CHAPTER 5 
 

QUANTUM MECHANICAL BEHAIVIOR 

OF NUCLEI 
 

The concepts and terminologies in quantum mechanics 

are such integral parts of nuclear concepts and the 

interaction of radiation with matter that some knowledge of 

quantum mechanics is essential to having full command of 

the language of nuclear physics.  

 

5.1. Introduction 
 

Nucleons in a nucleus do not behave like classical   

particles (colliding like billiard balls); instead, the wave 

behavior of the nucleon determines the properties of the 

nucleus. Therefore, we need quantum mechanics, which is a 

mathematical technique that enables us to calculate the wave 

behavior of a material particle.  

The quantum behavior of light and the photoelectric 

effect that had been analyzed, showed that the light or 

electromagnetic waves should also be considered as if its 

energy were delivered not smoothly and continuously as 

wave but instead in concentrated bundles or quantum effect 

(particle of light ).  

The analogy between matter and light (wave) was made 

in 1924 by de Broglie; he postulated that associated with a 

particle moving with momentum p is a wave of wavelength 

λ = h/p (Eq.1.22). Experimental confirmation soon followed 

through the diffraction of electrons (particles) like waves 

with de Broglie wavelength. The de Broglie theory was 

successful in those instances, but it is incomplete and 
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unsatisfying in describing the particle by classical physics, 

since the classical particle has a definite position in space 

and unique momentum p. 

The solution of this problem comes from quantum 

physics, the size of a quantum particle varies with the 

experiment performed. Thus, an electron or particle may 

have a certain size in one experiment and a very different 

size in another. Only through this coupling of the observing 

system and the observed object can we define observation in 

quantum physics. The particle then is localized within some 

region of space of dimension ∆x. It is likely to be found in 

that region and unlikely to be found elsewhere. We improve 

our knowledge of ∆x at the expense of our knowledge of 

momentum px, the very act of confining the particle to ∆x 

destroys the precision of our knowledge of px. 

 It is not our goal to take up the study of quantum 

mechanics as a topic by itself. On the other hand, we have 

no reasons to avoid using quantum mechanics whenever it is 

the proper way to understand nuclear concepts and radiation 

interactions.  

In the following sections, the concepts and terminologies 

in quantum mechanics (Schrödinger equation) will be given, 

since they are such integral parts of nuclear concepts, 

nuclear structure and the interaction of radiation with matter 

that some knowledge of quantum mechanics is essential to 

having full command of the language of nuclear physics. 

 

5.2. Uncertainty Principles 
  

The uncertainty principle is one of the most significant 

laws of physics, discovered by Werner Heisenberg in 1927 

(We cannot know the future because we cannot know the 

present). Accordingly, if we try to make a simultaneous 
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determination of x and px, our result will show that each is 

uncertain by respective amounts ∆x and ∆px, which are 

related by the Heisenberg uncertainty relationship.  

 

∆x ∆px ≥ ћ/2                                                               5.1 

 

where   ћ = h/2π = 1.0545×10
34

 j.sec  

This equation states that if we arrange matters so that ∆x 

is small (corresponding to a narrow wave group), ∆p will be 

large. If we reduce ∆p in some way, a broad wave group is 

inevitable and ∆x will be large.  

The same arguments hold for other form of the 

uncertainty principle, the other measurements concern 

energy and time. We might wish to measure the energy 

emitted during the time interval ∆t in an atomic or nuclear 

process. Since energy E = hν = hc/λ    where ν is the 

frequency (Eq.1.11), and ∆ν ≥ 1/∆t     also ∆E = h∆ν then: 

 

∆E ∆t ≥ ћ/2                                                                 5.2 

 

If a system live for a time ∆t, we cannot determine its energy 

except to within uncertainty ∆E. 

A third uncertainty relationship involves the angular 

momentum Lz, and the azimuthally angle θ, Fig. 5.1. 

 

∆Lz ∆θ ≥ ћ/2                                                               5.3 

 

That is, if we have Lz exactly, we know nothing at all about 

θ.   
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Figure 5.1. Bounded particle uncertainty relationships. 

 

5.3. de Broglie Wave Descriptions 
 

It is instructive to begin with the classical wave equation 

that incorporates the concept of de Broglie waves and to 

review some basic properties of waves and the concept of 

wave-particle duality. 

The wave nature of a moving particle leads to some 

remarkable consequences when the particle is restricted to a 

certain region of space instead of being able to move freely, 

as the electron bounded to the atom or a nucleon in the 

nucleus, and when it interacts with the nucleus or other 

particle.  

In classical mechanics, the wave equation for a one-

dimensional periodic disturbance ξ(x, t) is:  

 

2

2
2

2

2 ),(),(

x

tx
c

t

tx








 
                                            5.4 
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Solutions of the above equation may be of many kinds, 

reflecting the variety of waves that can occur, such as a 

single traveling pulse, a standing wave, a group (train) of 

waves or of superposed waves, etc…, the general solution is 

of the form: 
)(

0),( tkxietx                                              5.5 

 

where ω= 2πν is the angular frequency, υ the linear 

frequency, and k is the wavenumber related to the 

wavelength λ by k = 2π / λ. If Eq.5.5 is to be a solution of 

Eq.5.4, k and ω must satisfy the relation:  

 

ω= ck                                                                         5.6 

 

Therefore, our solution has the form of a traveling wave 

with phase velocity equal to c, which we will denote it by 

υph. In general, the relation between frequency and 

wavenumber is called the dispersion relation. We will see 

that different kinds of particles can be represented as waves, 

which are characterized by different dispersion relations.  

The solution Eq.5.5 is called a plane wave. In three 

dimensions, a plane wave is of the form e
ik.r

. It is a wave in 

space that can be visualized as a series of planes 

perpendicular to the wavevector k at any spatial point on a 

given plane, the phase of the wave is the same. That is to 

say, the perpendicular planes are planes of constant phase. 

When we include the time variation e
(−iωt)

, then     e
[i(k.r-ωt)]

 

becomes a traveling plane wave, meaning that the planes of 

constant phase are now moving in the direction along k at a 

speed of ω / k , which is the phase velocity of the wave υph.  

The wave equation Eq.5.4 also admits solutions of the 

form: 
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 ξ (x,t) =aosinkx cosωt                                                 5.7  

 

These are standing wave solutions. One can tell a 

standing wave from a traveling wave by the behavior of the 

nodes, the spatial positions where the wave function is zero. 

For a standing wave, the nodes do not move, or change with 

time, whereas for a traveling wave Eq.5.5, the nodes are: 

 

xn = (nπ +ωt)/ k                                                         5.8 

 

 Clearly the nodes are positions moving in the (+x) direction 

with the velocity dx/dt = ω/k. 

The choice between traveling and standing wave 

solutions as we will see depends on the physical solution of 

interest (which kind of problem one is solving). For the 

calculation of energy levels of a nucleus, the bound state 

problem, we will be concerned with standing wave solutions 

Eq.5.7. In contrast, for the discussion of scattering problem, 

it will be more appropriate to consider traveling wave 

solutions Eq.5.5.  

Our interest in the properties of waves lies in the fact that 

the quantum mechanical description of a nucleus is based on 

the wave representation of the nucleus. It was first 

postulated by de Broglie (1924) that one can associate a 

particle of momentum p and total energy E with a group of 

waves (wave packet) which are characterized by a 

wavelength λ and a frequency ν , with the relation, given in 

Chapter One: 
 

λ=h / p=h/ γmυ, where γ= (1- υ
2
/c

2
)

-1/2
                       5.9 

 

ν= E / h= γmc
2
/h                                                       5.10 
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Here, υ is the particle velocity. Moreover, the motion of the 

particle is governed by the propagation of the wave packet. 

This statement is the essence of particle-wave duality, a 

concept that we adopt throughout our study of nuclear 

physics. It is important to distinguish between a single wave 

and a group of waves. This distinction is seen most simply 

by considering a group of two waves of slightly different 

wavelengths and frequencies. Suppose we take as the wave 

packet: 

 

),(2),(1),( txtxtx                                  5.11 

with       

)sin(),(1 tkxtx                                        5.12

  

])()sin[(),(2 tdxdkktx                   5.13 

             

Using the identity: 

 ]2/)sin[(]2/)cos[(2sinsin BABABA  , we can 

rewrite Ψ(x,t) as:       

           

}2/)]2()2sin{[(]2/)cos[(2),( tdxdkktddkxtx    

  

   )sin(]2/)cos[(2 tkxtddkx                5.14 

     

In this approximation, terms of higher order in dk/k or dω/ω 

are dropped. Eq.5.14 shows two oscillations, one is the wave 

packet oscillating in space with a period of 2π/k, while its 

amplitude oscillates with a period of 2π/dk (Fig. 5.2). Notice 

that the latter oscillation has its own propagation velocity, 

dω/dk. This velocity is in fact the speed with which the 

associated particle is moving. Thus, we identify  
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υg = dω/dk                                                                5.15          

          

as the group velocity. The group velocity should not be 

confused with the propagation velocity of the wave packet, 

called the phase velocity (vph), given by: 

 

υph = νλ = E / p = c [1 + (moc / p)
2
]

1/2
                       5.16 

 

Here, mo is the rest mass of the particle and c the speed of 

light. We see the wave packet moves with a velocity greater 

than c, whereas the associated particle speed is necessarily 

less than c. This means that the phase velocity is greater 

than or equal to the group velocity.  

 

 
 

Figure 5.2. Spatial variation of a sum of two waves of 

slightly different frequencies and wave-numbers showing 

the wave packet moves with velocity υph that is distinct from 

the propagation (group) velocity υg of the amplitude. 

 

In the coming chapters, we will deal with three kinds of 

particles whose wave representations are of interest. These 

are:  
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1. Nucleons or nuclides, which can be treated as non-

relativistic particles. 

2. Electrons and positrons that usually should be treated as 

relativistic particles since their energies tend to be 

comparable or greater than the rest-mass energy. 

3. Photons, which are fully relativistic, since they have zero 

rest mass energy.  

 

For a non-relativistic particle of mass m moving with 

momentum p, the associated wavevector k and its kinetic 

energy is:  
 

p = ћk                                                                     5.17a 

and       

T = p
2
/2m = ћ

2
k

2
/2m                                              5.17b  

  
This is the “particle view”. The corresponding “wave 

view” would have the momentum magnitude p = h/λ, with 

λ= 2π/k, and energy (usually denoted as E rather than T) as 

hν= ћω. The wavevector, or its magnitude, the wavenumber 

k, is a useful variable for the discussion of particle scattering 

since in a beam of such particles, the only energies are 

kinetic, and both momentum and energy can be specified by 

giving k.  

For electromagnetic waves, the associated particle (the 

photon), has momentum p, which is also given by ћk, but its 

energy is: 
 

E = cћk = cp                                                            5.18 
 

Comparing these two cases, we see that the dispersion 

relation ω and group velocity νg (Eq.5.15) are: 
 

ω= ћk
2
/2m,     υg= ћk/m= p/m                                 5.19 
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for a non-relativistic particle, and 

 

ω= ck,            υg= c                                                  5.20       
 

for a photon.                                                 

 

This is consistent with our intuitive notion about particle 

speed and the universal speed of a photon in Chapter One.  

 For the calculation of energy levels of a nucleus, the 

bound state problem, such system is like a standing wave in 

a string stretched between the box's walls, the wave variable 

(wave function Ψ for the moving particle) must be zero at 

the walls, i.e., Ψ(0) = 0 and Ψ(a) = 0  for a box of width a.  

The possible de Broglie wavelengths of the particle 

trapped in the box of width (a) is determined by the largest 

wavelength (steady state of Eq.5.8) of λ = 2a and the next   λ 

= a then λ = 2a/3 … for n = 1, 2, 3…. respectively. So that 

the general form as shown in Fig. 5.3, is:  

 

λ = 2a/n             n = 1, 2, 3…                                   5.21 

 

Accordingly, the momentum of the particle p and its kinetic 

energy T will be limited, as Eq.5.9 and Eq5.17 and so, 

because the particle has no potential energy in this model, 

the only energies the particle can have are: 

 

,......3,2,1
282

2

2

22

2

22

2

2

 nn
mama

nh

m

h
En






        5.22 
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Figure 5.3. de Broglie wave and principle quantum 

number (n). 

 

Each permitted energy is called Energy Level, and the 

integer (n) that specifies energy levels En is called its 

quantum number. 

We can draw three general conclusions from the above 

equation: 

 

1. A bounded particle cannot have an arbitrary energy as a 

free particle can.   These discreet energies depend on the 

mass of the particle and on the detailed forces acting on 

the particle to bond it (trapped). 

2. A bounded particle cannot have zero energy, since          

λ = h/mυ, a speed υ = 0, means an infinite λ, but there is 

no way to reconcile an infinite wavelength with trapped 

particle. 

3. Because Plank‟s constant is so small, h = 6.63×10
-34 

j.sec, 

then quantization of energy is conspicuous only when the 

mass (m) and the width (a) are also small. 
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It is convenient to mention that this quantum number (n) 

is precisely the same formula of the principle quantum 

number determined by the solution of the Schrödinger 

equation applied to a potential well, as we will see in the 

next section, where the quantization of the bounded nucleon 

in the nucleus is therefore described by the principle 

quantum number (n). 

 

Example:  

An electron trapped in a box, 0.10 nm across (order of 

magnitude of atomic dimensions). Find the permitted 

energies. 

 

Solution 

 

me= 9.1×10
-31

 kg and a = 0.1 nm = 1.0×10
-10

 m 

 

From Eq.5.5, the permitted energies are: 

 

                       n
2
 (6.63×10-34 j.s)

2
 

En= -------------------------------------- = 6.0×10
-18

n
2
 j 

               8×( 9.1×10
-31

 kg)( 1.0×10
-10

 m)  

              

           = 38 n
2
 eV 

         

Then  

                Emin= E1 = 38 eV               for n=1 

                         E2 = 152 eV              for n=2  

                         E3 = 342 eV              for n=3  
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5.4. Schrödinger Wave Equation 
 

Schrödinger developed an equation describing the motion 

of a particle and its associated de Broglie wave, which has 

become the foundation of wave mechanics or quantum 

mechanics. As a result, it provides a quantitative description 

of matter in the atomic and nuclear scale. In other words, the 

mathematical aspects of nonrelativistic quantum mechanics 

are determined by solution to the Schrödinger equation. The 

ways to get the development of such equation is beyond the 

scope of this book, rather its applications to the quantized 

parameters are involved in nuclear structure.  

The wave function Ψ(r,t), a mathematical description of 

the wave packet, is to be treated as a space-time dependent 

quantity. We can write the Schrödinger equation in its time 

dependent form for a particle in a potential field V(r) as: 

 

   
  (   )

  
 0 

  

 
    ( )1 (   )                    5.23     

 

The two terms in the brackets can be thought of as an 

operator H, called the Hamiltonian of the system. H is a 

mathematical operator whose physical meaning is the total 

energy. Thus, it consists of the kinetic part E = p
2
/2m and 

the potential part V(r). The appearance of the Laplace 

operator 2 is to be expected, since the particle momentum p 

(vector quantity) is an operator in configuration space, with 

p 

i . The momentum operator is, therefore, a first-order 

differential operator in configuration space. By defining the 

Hamiltonian H as the operator:  

 

   
  

  
    ( )                                               5.24 
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We can express the time-dependent Schrödinger equation in 

operator notation:  

 

   
  (   )

  
   (   )                                              5.25   

 

It should be noticed thatEq.5.23 is valid only for a non-

relativistic particle (the particle speed is much less than the 

speed of light); whereas Eq.5.25 is more general if H is left 

unspecified. This means that one can use a relativistic 

expression for H, and then Eq.5.25 would lead to an 

equation first derived by Dirac. The Dirac equation is what 

one should consider if the particle was an electron.  

Compared to the classical wave equation, Eq.5.4, which 

relates the second spatial derivative of the wave function to 

the second-order time derivative, the time-dependent 

Schrödinger wave equation, Eq. 5.23 or 5.25, is seen to 

relate the spatial derivative of the wave function to the first-

order time derivative. This is a significant distinction. 

Among the implications is the fact that the classical wave is 

real and measurable (for example, an elastic string or an 

electromagnetic wave), whereas the Schrödinger wave 

function is complex and therefore not measurable.  

An important property of Schrödinger equation is that it 

is linear in the wave function Ψ(r,t). To ascribe physical 

meaning to the wave function, one needs to consider the 

particle density or probability density defined as 

Ψ*(r,t)Ψ(r,t), where Ψ*(r,t) is the complex conjugate of the 

wave function, from which the probability to find the 

particle(the wave packet) between r1 and r2 is the integral of 

all infinitesimal probabilities: 

 

  ∫      
  
  

                                                       5.26 
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Almost all our discussions are concerned with the time-

independent form of the Schrödinger equation. This is 

obtained by solving Eq.5.25 for time (the energy operator

t
iE



  ) and considering a periodic solution of the form: 

 (   )   ( )       ( )  
   

                          5.27 

 

where, E is the total energy. Inserting this solution into   

Eq.5.25 gives the time-independent Schrödinger equation: 

 

  ( )    ( )                                                      5.28 

 

We see that Eq.5.28 has the form of an eigenvalue 

problem with H being a linear operator, E the eigenvalue, 

and ψ(r) the eigenfunction. 

In spite of the fact that a full treatment of the Schrödinger 

equation would require at least three dimensions, we shall, 

for better understanding, start with one-dimensional 

problems. In addition, we shall assume that our system is 

time-independent, Eq.5.28 can be written:   

   

)()()(
)(

2 2

22

xExxV
dx

xd

m






                         5.29 

or 

)]([
2

)(
)(

2

22

2

2

xVE
m

kwherexk
dx

xd






      5.30 

 

The physical meaning of the above equation is essentially 

the statement of energy conservation, the total energy E is 

the sum of kinetic and potential energies. Since Eq.5.29 

holds at every point in space, the fact that the potential 
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energy V(x) varies in space means that the kinetic energy of 

the particle will also vary in space.  

In general, k
2
 is a function of x because of the potential 

energy V(x), but for piecewise constant potential functions 

such as a rectangular well or barrier, we can write a separate 

equation for each region where V(x) is constant and thereby 

treat k as a constant in Eq.5.30.  

A general solution to Eq. 5.30 is then: 

 

or equivalently      

kxBkxAx

BeAex ikxikx

cossin)(

)(



 





   }          5.31 

 

where A, Aʹ and B, Bʹ are constants to be determined by 

appropriate boundary conditions.  

Eq. 5.28 is a second order differential equation (boundary 

value problem). The method of solving this equation is very 

much dependent on the specific form of the potential energy 

V(x). The wave function must have the following conditions 

and properties for the solution to be physically meaningful: 

 

1. ψ(x) is continuous across any boundary, say at x = a: 

   

  0)()(lim
0







aa                                 5.32 

 

2. dψ/dx is continuous across any boundary, at x = a: 

 

0lim
0



































axax dx

d

dx

d
                              5.33 
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3. From the probability density Eq.5.26, the probability to 

find the particle between the limits x1 and x2 is the 

integral of all infinitesimal probabilities:  




2

1

x

x
dxP                                                          5.34 

The total probability to find the particle from x1 = -∞ to 

x2 = ∞, must be 1, which is known as the normalization 

condition.      

4. Prediction of the averaging value of any measurement 

quantity, if f is the operator associated with some 

observable quantity f(x), the average value of the 

function f(x) is: 


 dxff                                                       5.35 

5. From our knowledge of particle density (number of 

particles per unit volume, or the probability of the finding 

the particle in an element of volume d
3
r about r Eq.5.26), 

the Particle current density j(r) associated with ψ(r) is 

continuous everywhere. Then the net current of this 

quantity gives the number of particles per unit area per 

second passing any point x: 














dx

d

dx

d

m
ij







2


                                   5.36 

In the following section, we will illustrate the application 

of a simple one-dimensional problem. The next one extends 

the bound state calculation to three-dimensional systems to 

determine the bound state energy levels of the nucleus and 

corresponding wave functions. 
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5.5. One Dimension Problems 
 

5.5.1. Free particle 
 

This is a simplest one region problem, representing a 

source of particles such as an accelerator located at x = -∞, 

emitting particles at a rate I particle per second. The particle 

is free to move in a +x direction with a momentum +ћk 

without being acted on by any force. Then V(x) = 0 

everywhere and no boundary conditions, accordingly    

Eq.5.30 is reduced to: 

 

2

22

2

2 2
)(

)(



mE
kwherexk

dx

xd
 


       5.37 

 

The solution to this equation is given by Eq.5.31, since 

the wave traveling in +x, then the constant B ≡ 0 to get;  
ikxAex )( , where A is the amplitude of  the incident 

particle.  

To find the constant A, we use Eq.5.36 for the particle 

current density to get: 

 

2
A

m

k
j


                                                            5.38 

which must be equal to I. thus we can get
k

mI
A


 . 
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5.5.2. Particle interaction  
 

This is a multiregional problem, describe the interaction 

of free particle and nuclei with each other to scatter, if         

E > V0 or initiate nuclear reactions, if E < V0. In each case 

(experiment), a beam of free particles (electrons, 

nucleons….) traverses a target containing nuclei. A certain 

fraction of the beam particles will interact with the target 

nuclei, either scattering into a new direction or reacting in a 

way that particles are created or destroyed. 

In the following subsections, we will first deal with semi 

finite-range target potential, which is called step potential, 

with finite-range target potential which is called barrier 

potential.  

 

5.5.2.1.  Step potential  
 

As a simple example (two regions) of quantum-

mechanical scattering problem, let us consider a particle of 

momentum +ћk1 from a source at x = -∞ incident on the 

stationary wall (step) of finite height V0 at x = 0, as shown in 

Fig. 5.4.  

The potential energy of the particle for each region is 

given by: 

 

V(x) = 0           -∞ < x < 0, region 1 

V(x) = V0           0 < x < ∞, region 2                        5.39 

 

 In region 1, the Schrödinger equation is the same as 

Eq.5.37 with a wave number k1 = (2mE/ћ
2
)

1/2
 and the 

solution is as Eq.5.31:  
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xikxik
BeAex 11)(1


                                       5.40 

 

while in region 2, the Schrödinger equation is identical to 

Eq.5.30, with a wave number )(
2

022 VE
m

k 


 , and the 

solution is: 

 
xikxik

DeCex 22)(2


                            5.41 

 

where A, B, C and D represent the amplitude of each wave 

term.  

In order to proceed, we depend on the physical analysis 

of each term of the two solutions. As the particle incident on 

the step in +ve x direction of region 1(Fg. 5.4), then the A 

term of Eq.5.40 represents the incident-traveling wave of 

momentum +ћk1, while the B term is the reflected-traveling 

wave of momentum -ћk1. Also for region 2, the C term of 

Eq.5.41 represents the transmitted-traveling wave of 

momentum +ћk2 and the D term cannot represent any part of 

solution because there is nothing to return the wave toward 

the origin in region 2, therefore the constant D must be 

setting to zero (D = 0).    

Applying the continuity conditions across x = 0, Eq.5.32 

and Eq.5.33 we get:  

 

A + B = C                                                               5.42a 

 and   

k1 (A – B) = k2 C                                                     5.42b  

 

then solving Eq.5.42a and Eq.5.42b, we get:   
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12

12
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/1

2

/1

/1

kk
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kk

kk
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







                                               5.43 

 

In order to have a complete solution, we depend on the 

physical interpretation of the mathematical formalism. The 

exact form of the interpretation depends crucially on the 

relative values of E and V0.  

 

First case: If E > V0: 

  

We are talking about a particle which, in classical theory, 

would have possessed enough energy to climb the wall and 

continue along the +ve x-axis. In this case, k2 is a real 

number; the incident, reflected, and transmitted waves are ll 

simply propagating with no attenuation. The only thing 

unusual about all this is that quantum mechanics does not 

tell us whether a given projectile will be reflected or not. 

Classically, a particle with E > V0 would proceed-slowed 

down but not reflected. While in the quantum description, 

there will always be a reflected wave from the interface      

(x = 0), since B ≠ 0 (except for the trivial case in which       

k1 = k2 that arises only when V0 = 0). We cannot predict for 

certain that the particle will be reflected, but we can 

calculate the probability that it will be reflected. In a similar 

interpretation, we can calculate the probability of the 

transmission of the particle through the interface.  

Let us define the reflection coefficient R as the current in 

the reflected wave divided by the incident current: 
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incident

reflected

j

j
R                                                         5.44 

 

From the application of Eq.5.36 to the wave function in 

region 1, we obtain the net current: 

 

  reflectedincident jjBA
m

k
j 

221
1


                        5.45 

 

The net current is the difference between the current goings 

to the right (jincident) and that going to the left (jreflected). The 

quantities 
22

BandA are particle densities with the 

dimension of number of particles per unit volume.  

 
2

12

12

2

2

/1

/1














kk

kk

A

B
R                                           5.46 

 

In addition, the transmission coefficient T is defined as 

the fraction of the incident current that is transmitted past 

the boundary: 
 

incident

dtransmitte

j

j
T                                                            5.47 

 

Applying Eq.5.36 for the transmitted to region 2, 

22 C
m

k
j dtransmitte


 and incident current from Eq.5.45 to have: 
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2

12
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2

2

1

2

)/1(

/4

kk

kk

A

C

k

k
T


                                       5.48 

 

Notice that for the case in which k2 is real, R +T = 1, 

indicating that an incident particle must undergo either 

reflection or transmission. The resulting solution is 

illustrated in Fig. 5.4. 

 

 
 

Figure 5.4. Schematic behavior of the wave function of 

incident particle on a step potential. 

 

Second case: if E < V0.  

 

The case E < V0 is an example of quantum-mechanical 

attenuation problem. The incident particle would be 

reflected from the step according to classical physics, which 

is completely different from that according to quantum 

mechanical treatment. In quantum mechanics, there would 
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be some transmission wave into region 2 because C ≠ 0 for 

all finite values of k2 in Eq.5.43. In region 2 we realize that 

E < V0 implies that k2 is imaginary, what this means is, there 

is no wave-like solution in this region. So it must be written 

in the form k2 = iК2, here )(
2

022 EV
m




  is a real wave 

number and with the fact (i.i = -1), the solution becomes: 

 
xx

DeCex 22)(2

 


                                   5.49 

 

Again, the D term should be eliminated and the transmitted 

wave is the C term but it is no longer traveling, propagating, 

or oscillating wave, it is now purely attenuating as is 

illustrated with the first case in Fiq.5.4. 

 

5.5.2.2.   Barrier potential 
 

The barrier potential is a more realistic (three regions) 

problem in nuclear physics, where we look for positive-

energy solutions as in scattering problem. Again, the exact 

form of the physical interpretation depends crucially on the 

relative values of E and V0. 

 

First case: If E > V0. 

 

We consider a one-dimensional system where a particle 

of mass m and energy E is projecting from a source at -∞ 

and incident upon a potential barrier with width a  and 

height V0 (E > V0), as shown in Fig. 5.5. 

The potential is simplified as:  
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V(x) = 0           -∞ < x < 0, region 1 

V(x) = V0           0   x   a, region 2                        5.50            

V(x) = 0            a < x < ∞, region 3 

 

 In the three regions, the solutions are: 

 

xikxik

xikxik

xikxik
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                                        5.51 

 

where E
m

kk
231

2


 and )(

2
022 VE

m
k 


 Are real 

wave numbers. 

In a similar way to the step potential case, we proceed to 

apply the boundary conditions 1 and 2 at x = 0 and x = a, to 

find the constants. Set the constant G=0 since there is 

nothing in region 3 that can reflect the particle to travel to 

the left, and organize these information into a useful form, 

namely the transmission and reflection coefficients. 

Using the wave functions in region 1 to get the net 

current, given by Eq.5.45 and in region 3 to obtain: 
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                                                           5.52 

 

With this interpretation we define: 
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Since particles cannot be absorbed or created in region 2 

and there is no reflection in region 3, the net current in 

region 1 must be equal to the net current in region 3, or        

j1 = j3. It then follows that the condition T + R = 1 is always 

satisfied. For the purpose of calculating the transmission 

coefficient, we need to keep A and F to get after multiple 

steps of algebra: 
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V
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)(4
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


                                      5.54 

 

Second case: if E < V0. 

 

For this case, the ψ1 and ψ2 solutions are as above, but in 

region 2, the kinetic energy E - V0 is negative. So the wave 

number k2 is imaginary in a propagating wave (or we can 

say the wave function is monotonically decaying rather than 

oscillatory). This means that there is no wave-like solution 

in this region. The solution then is similar to that of region 2 

of the second case of step potential Eq.5.49. 

Now, following the same procedure of the first case, we 

arive at the solution for the transmission coefficient: 

 

a
EVE
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2

0 sinh
)(4

1
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
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

                                    5.55 

 

The transmission coefficient is sometimes called the 

penetration factor and denoted as P. Using the leading 

expression of sinh(x) = (e
x
 – e

-x
)/2 for small and large 
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arguments, one can readily obtain simpler (approximated) 

expression for T or P in the limit of thin and thick barriers: 
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Thus the transmission coefficient decreases monotonically 

with increasing V0 or a, relatively slowly for thin barrier and 

more rapidly for thick barrier. 

For example, which limit is more appropriate for our 

interest? Consider a 5 MeV proton incident upon a barrier of 

height 10 MeV and width 10 fm (10
-12

 cm).  This gives         

κ ~ 5 x 10
12

 cm
-1

, or κa ~ 5. Then using the second equation 

of Eq.5.56 we find:  

4-10 102~
2

1

2

1
16~  eP  

As a further simplification, one sometimes even ignores 

the prefatory in Eq.5.56 and takes: 

)(2
2

2 0 EVm
a

a eeP


 
                                   5.57 

This phenomenon of barrier penetration or quantum 

mechanical tunneling has important applications in nuclear 

physics, especially in the theory of α-decay. Fig. 5.5 shows a 

schematic of the wave function in each region for both cases 

of the barrier potential. 
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Figure 5.5 Schematic behavior of the wave function of 

incident particle on a barrier potential. 

 

5.5.3. Bound state 
 

This is a problem of a particle in a potential well, which 

is the simplest problem in quantum mechanics describing 

the binding of the nucleons in the nucleus. The problem is 

treated by dividing the system (nucleus) into two regions, 

the interior where the particle feels a constant negative 

potential and the exterior where the particle is a free particle 

(zero potential). The solutions to the Schrödinger equation 

have to be different in these two regions to reflect the 

binding of the particle; the wave function is oscillatory in 

the interior region and exponentially decaying (non-

oscillatory) in the exterior region. Matching these two 

solutions at the boundary where the potential goes from a 

finite value (interior) to zero (exterior) gives a condition on 

Scattering 

   λ3= λ1 

Incident 

λ1=2π/k1 
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the wavenumber (or wavelength), which turns out to be the 

condition of quantization. The meaning of quantization is 

that solutions exist only if the wavenumbers take on certain 

discrete values, which then translate into discrete energy 

levels for the particle. For a given potential well of certain 

depth and width, only a discrete set of wave functions can 

exist in the potential well. These wave functions are the 

eigenfunctions of the Hamiltonian (energy) operator, with 

corresponding energy levels as the eigenvalues. Finding the 

wavefunctions and the spectrum of eigenvalues is what we 

mean by solving the Schrödinger wave equation for the 

particle in a potential well. Changing the shape of the 

potential means a different set of eigenfunctions and the 

eigenvalues. The procedure to find them, however, is the 

same.  

We will use Eq.5.29 to investigate the bound-states of a 

particle in a square well potential of depth V0 (i.e. the 

potential V(x) = –V0, is constant) and width a.  

For a square well potential, V(x) has the following form: 

 

elswhere

axaVxV

0

2/2/)( 0




                    5.58 

 

Fig. 5.6 shows the interior region and the left and right 

exterior regions as one region. The Schrödinger equation for 

interior and the two exterior regions can be put into the 

standard form of second-order differential equation: 
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Figure 5.6 The square well potential centered at the origin 

of width a. 
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      5.59 
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            5.60

          

where )(
2

02
VE

m
k 


 is the wavenumber of the wave 

inside the well that is always positive, so that k is real and

E
m
2

2


  is the wavenumber of exterior wave; it is also 

real.  

In other words, the wavenumber we introduce is always 

real, whereas the sign of the second term in the wave 

equation can be plus, as seen in Eq.5.59, or minus, as in 

Eq.5.60. For k
2
 to be positive, we understand that the 

solution where –E > V0 will be excluded from our 
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considerations. Accordingly, the general solutions of the 

above equations are: 

                                       

2)(

22cossin)(

2)(

axGeFex
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axBeAex
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     5.61 

 

To keep the wave function finite in the left external 

region (when x → -∞), we must have B = 0, and to keep it 

finite in the right external region (for x → +∞), we must 

have F=0. This is justified on physical ground, for bound 

state the particle should mostly be localized inside the 

potential well. This means that away from the well the wave 

function should decay rather than grow. 

Now to obtain solutions of physical interest, we keep in 

mind that the solutions should have certain symmetry 

properties. In this case they should have definite parity, or 

inversion symmetry (see section 5.7). This means that when 

x→-x, ψ(x) must be either invariant or it must change sign. 

The reason for this requirement is that the Hamiltonian H is 

symmetric under inversion (the potential is symmetric given 

our choice of the coordinate system (see Fiq.5.5)). Thus, we 

take for our solutions: 
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         5.62 

 

The choice of a solution with odd-parity sin kx or even-

parity cos kx is arbitrary because both solutions would be 
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equally acceptable. While a linear combination of the two 

solutions, such as the sum, kxDkxC cossin   would not be 

acceptable because the sum of odd and even parity solutions 

violates the requirement that all solutions must have definite 

parity.  

Now, applying the continuity conditions at x=-a/2 and at 

x=a/2, and the normalization condition, we find the 

following relationships for even-parity solutions and odd-

parity solutions, respectively: 

 

ex

in

in

ak
k 

2
tan                                                   5.63a             

or   

ex

in

in

ak
k 

2
cot                                                 5.63b

           

Eq.5.63a and b are the most important results of this 

calculation; they are sometimes called a dispersion relation. 

They are relations of determining the allowed values of 

eigenvalue E. These are then the discrete (quantized) energy 

levels that the particle can have in the particular potential 

well given, a square well of width a and depth V0.  

Since both solutions are equally acceptable, one has two 

distinct sets of energy levels given by Eq.5.63 a and b. 

These transcendental equations cannot be solved directly. 

They can be solved numerically or graphically. The 

graphical solutions are easiest by rewriting Eq.5.63 in the 

following dimensionless form: 

 

parityeven tan                     5.64a 

or                                

parityodd   cot                       5.64b 
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where 2
,

2
aak exin 

  , then we notice that 

 

R
Vma


2

0

2

22

4

2


                                            5.65 

 

is a constant for fixed values of Vo and a. In Fig. 5.7, we 

plot the left- and right-hand sides of Eq.5.64a and b, and 

obtain from their intersections the allowed energy levels. 

The figure shows that there could be no odd-parity solutions 

if R is not large enough (the potential is not deep enough or 

not wide enough), while there is at least one even-parity 

solution no matter what values are the well depth and width. 

       The graphical method thus reveals the following 

features. It exist as a minimum value of R below which no 

odd-parity solutions are allowed. On the other hand, there is 

always at least one even-parity solution. The first even-

parity energy level occurs at α < π/2, whereas the first odd-

parity level occurs at π/2 < α < π. Thus, the even- and odd-

parity levels alternate in magnitudes, with the lowest level 

being even in parity. We should also note that the solutions 

depend on the potential function parameters only through 

the variable R, or the combination of V0a
2
, so that the effect 

of any change in well depth can be compensated by a change 

in the square of the well width. 
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Figure 5.7 Graphical solutions of Eq.5.64a and b.  

 

We now summarize our results for the allowed energy 

levels of a particle in a square well potential and the 

corresponding wave functions. 

The discrete values of the bound-state energies (the 

allowed energy levels) E, k or к can be obtained from    

Eq.5.63 and Eq.5.65: 

 

mm

k
VE

22

2222

0


                                         5.66 

 

Fig. 5.8 shows a sketch of the three lowest-level 

solutions, the ground state with even-parity, the first excited 

state with odd-parity and the second excited state with even-

parity. Notice that the number of excited states that one can 

have depends on the value of V0 because our solution is 



184 

 

valid only for negative E. This means that for a potential of a 

given depth, the particle can be bound only in a finite 

number of states.  

At this point it can be noted that we anticipate that for a 

particle in a potential well in three dimensions (next 

section), the cosine solution to the wave function has to be 

discarded because of the condition of regularity (wave 

function must be finite) at the origin. This means that there 

will be a minimum value of R or V0a
2
 below which no bound 

states can exist. This is a feature of problems in three 

dimensions, which does not apply to problems in one 

dimension.  

Now, to obtain results that are more explicit, it is 

worthwhile to consider an approximation to the boundary 

condition at the interface. Instead of the continuity of ψ and 

its derivative at the interface, one might assume that the 

penetration of the wave function into the external region can 

be neglected (i.e.  ψex = 0) and therefore require that ψin 

vanishes at x = ± a /2; this case is called infinite well 

potential.  

Applying this condition to Eq.5.62 gives ka = nπ, where 

n is any integer or equivalently: 
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       n = 1, 2, 3…                    5.67  
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Figure 5.8 Ground state and the first two excited state 

solutions. Approximate solutions (infinite potential well) are 

indicated by the dashed lines. 

 

This shows explicitly how the energy eigenvalue En 

varies with the level index n, which is the quantum number 

for the one-dimensional problem under consideration. The 

corresponding wave functions under this approximation are: 
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                  5.68 

 

This is equivalent to the result obtained by de-Broglie. The 

first solutions in this approximate calculation are also shown 

in Fig. 5.8 by the dashed lines. We see that requiring the 

wave function to vanish at the interface has the effect of 

confining the particle in a potential well of width a, with 
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infinitely steep walls (the infinite well potential or limit of 

V0→ ∞). It is, therefore, to be expected that the problem 

becomes independent of V0 and there is no limit on the 

number of excited states. Clearly, the approximate solutions 

become the more useful the greater is the well depth and the 

error is always an overestimate of the energy levels as a 

result of squeezing of the wave function (physically; this 

makes the wave have a shorter period or a larger 

wavenumber). 

 

5.6. Bound State in Three Dimensions 
 

5.6.1. Spherical well potential 
 

We will now extend the bound-state calculation, the 

particle restricted to a certain region of space, to three-

dimensional systems. The problem we want to solve is 

essentially the same as before, except that we wish to 

determine the bound-state energy levels and corresponding 

wave functions for a particle in a three-dimensional 

spherical well potential. Although this is a three-

dimensional potential, we can take advantage of its 

symmetry in angular space and reduce the calculation to an 

equation still involving only one variable, the radial distance 

between the particle position and the origin. In other words, 

the spherical potential is still a function of one variable:  

 

otherwise

rrVrV o
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


                                     5.69 

 

Here, r is the radial position of the particle relative to the 

origin. Any potential that is a function only of r, the 
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magnitude of the position r and not the position vector itself, 

is called a central-force potential. As we will see, this form 

of the potential makes the solution of the Schrödinger wave 

equation particularly simple. For a system where the 

potential or interaction energy has no angular dependence, 

one can reformulate the problem by factorizing the wave 

function into a component that involves only the radial 

coordinate and another component that involves only the 

angular coordinates. The wave equation is then reduced to a 

system of uncoupled one-dimensional equations, each 

describing a radial component of the wave function. As to 

the justification for using a central-force potential for our 

discussion, this will depend on which properties of the 

nucleus we wish to study.  

We, again, begin with the time-independent wave 

equation, so that Eq.5.23 is reduced to:  

 

(r)Er)()(
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                                5.70 

 

Since the potential function has spherical symmetry, it is 

natural for us to carry out the analysis in the spherical 

coordinate system rather than the Cartesian system. A 

position vector r is then specified by the radial coordinate r 

and two angular coordinates, θ and θ, the polar and 

azimuthally angles, respectively, see Fig. 5.9. Therefore, 

another new feature that will be important in our subsequent 

investigations of nuclear structure arises. Accordingly, we 

search for separable solutions of the form: 

 

),()()()()()( 
mYrRrRr                5.71 
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where )()(),(  
mY is the spherical harmonic function, 

as will be seen later.  In this coordinate system, the Laplace 

operator 2 can be written in the following form: 
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where 2

rD  is an operator involving only the radial 

coordinate: 
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and the operator L
2
 involves only the angular coordinates: 
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In terms of these operators, the wave equation Eq.5.70 

becomes: 
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For any potential V(r), the angular variation of ψ is 

always determined by the operator L
2
/2mr

2
. Therefore, one 

can study the operator L
2
 separately and then use its 

properties to simplify the solution of Eq.5.74. This needs to 

be done only once, since the angular variation is 

independent of whatever form one takes for V(r). It turns out 

that L
2
 is very well known (it is the square of L or L.L  
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which is the angular momentum operator); it is the operator 

that describes the angular motion of a free particle in three-

dimensional space.  

 

 
 

Figure 5.9 A position vector r in the spherical coordinate 

system. 

 

5.6.2. Orbital angular momentum 

 

With a little manipulation, we get the differential 

equation for Φ(θ) from Eq.5.74 is: 
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        5.76 

 

where 
2

m  is the separation constant, that will be called the 

magnetic quantum number and mℓ = 0, ±1, ±2, ±3….  

 

 

While the differential equation for Θ(θ) is: 
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with a solution: 
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where ℓ = 0, 1, 2, 3 … is the orbital angular quantum 

number. The solution )(
m can be expressed as a 

polynomial of degree ℓ in sin or cos . Together, and 

normalized, )(
m  and )(

m  give the spherical harmonics

),( 
mY . It can be shown from Eq.5.74 and 5.78 that the 

eigenfunction of L
2
 are the spherical harmonics functions, 

),( 
mY : 
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With  cos , the function )(
mP  is the associated 

Legendre polynomials, which are in turn expressible in 

terms of Legendre polynomials )(P : 
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with the well-known first four Legendre polynomials )(P : 
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and the first four spherical harmonic functions ),( 
mY : 
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Special functions like 
mY and 

mP  are quite extensively 

discussed in standard texts and reference books on 

mathematical functions. For our purposes, it is sufficient to 

regard them as well known and tabulated quantities like 

sines and cosines, and whenever the need arises, we will 

invoke their special properties as given in the mathematical 

handbooks.  

It is clear from Eq.5.79 that ),( 
mY is an eigenfunction 

of L
2
 with corresponding eigenvalue ℓ(ℓ+1)ћ

2
. Since the 

angular momentum of the particle, like its energy, is 

quantized, the index ℓ can take on only positive integral 

values or zero, ℓ = 0, 1, 2, 3…and the index mℓ can have 

integral values from - ℓ to ℓ (mℓ = 0, ±1, ±2…±ℓ). Then for a 

given ℓ, there can be 2ℓ + 1 values of mℓ, in other words,     

mℓ = - ℓ, - ℓ+1, - ℓ+2...,-1, 0, 1…, ℓ-2, ℓ-1, ℓ. 

In quantum mechanics, we evaluate the expectation value 

of the angular momentum of a nucleon, for simplicity by 
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calculating the magnitude of the average value of <L
2
>, 

instead of <L>:  

 

<L
2
> = ∫ ψ

*
L

2
ψdx                                                    5.83          

 

where ψ, ψ
*
 are the Schrödinger wave function and its 

conjugate, respectively. 

In addition,   2222

zyx LLLL  is a function of position, 

as shown in Fig. 5.10: 

 

 
 

Figure 5.10 The vector L rotates rapidly about the z-axis, so 

that Lz stays constant, but Lx and Ly are variable. 

 

For an isolated nucleus, the angular momentum is 

conserved and represented by the orbital angular quantum 

number (ℓ) and the magnetic quantum number mℓ with 

values of: 

 

<L
2
> = ħ

2
ℓ (ℓ + 1),      mℓ = 0, ±1, ±2…, ±ℓ.           5.84 
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In addition, the directed orbital angular momentum (the 

magnitude of L) is: 

 

...3,2,1,0)1(L   with                    5.85 

 

The angular momentum quantum number (ℓ) has the 

same function in all three-dimensional problems involving 

central potentials, where V = V(r). The significance of mℓ 

can be seen from the property of Lz, the projection of the 

orbital angular momentum vector L along a certain direction 

in space (in the absence of any external field, this choice is 

up to the observer). Following convention, we will choose 

this direction to be along the z-axis of our coordinate system, 

in which case the operator Lz has the representation, 




 iLz , and its eigenfunctions are also ),( 

mY , with 

eigenvalues mℓћ. For z component of L to be determined, we 

have:   

 

<Lz> = ħmℓ                                                               5.86  

 

Notice from Fig. 5.10 that, <Lz> < )1(L   , the             

z component of the vector is always less than its length. 

Now, it is clear that since the angular space is two-

dimensional  ,  (corresponding to two degree of freedom), 

it is to be expected that two quantum numbers will emerge 

from our analysis, those are the indices ℓ and m. For the 

same reason, we should expect three quantum numbers in 

our description of three-dimensional systems, i.e., adding 

another quantum number for radial coordinate. We should 

regard the particle (nucleon) as existing in various states, 
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which are specified by a unique set of quantum numbers, 

each one is associated with a certain orbital angular 

momentum that has a definite magnitude and orientation 

with respect to our chosen direction along the z-axis. The 

particular angular momentum state is described by the 

function ),( 
mY  with ℓ known as the orbital angular 

momentum quantum number, and mℓ the magnetic quantum 

number.  

Finally, we can specify the magnitude and one Cartesian 

component (usually called the z-component) of L by 

specifying ℓ and mℓ, an example of an orbital angular 

momentum with ℓ=2 is shown in Fig. 5.11, which gives 

2ℓ+1=5 projections along z-axis with a magnitude 6L  . 

In this case, the x and y-components are undetermined, in 

that they cannot be observed simultaneously with the 

observation of L
2
 and Lz. 

 

5.6.3. Radial wave equation  
 

Returning to the wave equation Eq.5.75, we are looking 

for a solution as an expansion of the wave function in 

spherical harmonics series: 

 









m

mYrRr
,

),()()(                                  5.87 

 



195 

 

 
Figure 5.11 The projection of an orbital quantum number 

along z-axis. 

 

We can eliminate the angular part of the problem by 

multiplying the wave equation by the complex conjugate of 

a spherical harmonic and integrating over all solid angles 

(recall an element of solid angle is sinθdθdθ ), since the 

property of orthogonality gives:  

 

   

 


0

2

0

* ),(),(sin mmmm YYdd               5.88 

 

where   denotes the Kronecker delta function:  
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1
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and because of Eq.5.75, the L
2
 operator in Eq.5.79 can be 

replaced by the factor ℓ(ℓ +1)ћ
2
, obtaining the following     

r-dependent equation: 

 

)()()(
2

)1(

2 2

2
2

2

rERrRrV
mr

D
m

r 














          5.89 

 

This is an equation in one variable, the radial coordinate 

r, although we are treating a three-dimensional problem. We 

can make this equation look like a one-dimensional problem 

by transforming the dependent variable Rℓ. Define the radial 

function:  

 

)()( rrRrur                                                         5.90 

 

Inserting this into Eq.5.89, we get: 

 

)()()(
2

)1()(

2 2

2

2

22

rEururV
mrdr

rud

m


 












    5.91 

 

We will call Eq.5.91 the radial wave equation. It is the basic 

starting point of three-dimensional problems involving a 

particle interacting with a central potential field.  

We observe that Eq. 5.91 is actually a system of 

uncoupled equations, one for each fixed value of the orbital 

angular momentum quantum number ℓ. With reference to 

the wave equation in one dimension, the extra term 

involving ℓ (ℓ +1) in Eq.5.91 represents the contribution to 

the potential field due to the centrifugal motion of the 

particle. The 1/r
2
 dependence makes the effect particularly 

important near the origin; in other words, centrifugal 
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motion gives rise to a barrier that tends to keep the particle 

away from the origin. This effect is of course absent in the 

case of ℓ = 0, a state of zero orbital angular momentum, as 

one would expect. The first few ℓ states are usually the only 

ones of interest in our discussion (because they tend to have 

the lowest energies). Therefore, the solution of the radial 

wave equation   Eq.5.91 depends on the form of the central 

potential V(r) applied, as we will see in the next chapter.  

The wave function that describes the state of orbital 

angular momentum ℓ is often called the ℓ
th

 partial wave: 

 

),()(),,( 
 mYrRr                                  5.92 

 

Notice that in the case of s-wave the wave function is 

spherically symmetric since Y0,0 is independent of θ and θ. 

 

5.6.4. Square well potential 
 

Thus far, we have confined our discussions of the wave 

equation to its solution in spherical coordinates. There are 

situations where it will be more appropriate to work in 

another coordinate system. As a simple example of a bound-

state problem, we can consider the system of a free particle 

confined in a cubical box of dimension a along each side,    

0< x, y, z <a. In this case, it is clearly more convenient to 

write the wave equation Eq.5.70 in Cartesian coordinates:  

 

)()(
2 2

2

2

2

2

22

xyzExyz
zyxm

 
























              5.93 

 

The potential energy inside this region is zero, V(0<x, y, z<a)=0. 

Outside it is infinite (infinite square well). The boundary 
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conditions are ψ = 0 whenever x, y, or z is 0 or a. Since both 

the equation and the boundary conditions are separable in 

the three coordinates, the solution is of the product form: 
 

  )/sin()/sin()/sin(/2

)()()(),,(

2/3
aznaynaxna

zyxzyx

xyx

nnn zyx









 5.94 

 

where nx =1, 2, 3… ny =1, 2, 3… nz =1, 2, 3… and the 

energy becomes a sum of three contributions: 

 

][
2

)( 222

2

2

,,

zyx

nnnnnn

nnn
ma

EEEE
zyxzyx





                              5.95 

 

To provide the interpretation of this result, we notice that 

there are three quantum numbers (nx, ny, nz), which are 

necessary to describe each energy state. This fact is the 

general property of three-dimensional systems and none of 

the quantum numbers may be zero. The lowest energy, the 

ground state, occurs when nx = ny = nz = 1. While each state 

of the system is described by a unique set of quantum 

numbers, there can be more than one state at particular 

energy levels. Whenever this happens, the energy level is 

said to be degenerate.  

For example, there are three possibilities for the first 

excited state: 
 

nz =2         nx = ny =1 or defined as (112) 

ny =2         nx = nz =1 or defined as (121) 

nx =2         ny = nz =1 or defined as (211)  
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Though they are three different states, they are all at the 

same energy, so the level at 6(ћπ)
2
/2ma

2
 is triply degenerate. 

The concept of degeneracy is useful in our coming 

discussion of the nuclear shell model, in the next chapter, 

where one has to determine how many nucleons can be put 

into a certain energy level. Fig. 5.12 shows the energy level 

diagram for a particle in a cubical box. Another way to 

display the information is through a table, such as Table 5.1. 

The energy unit is seen to be
2

2

2

)(

ma
E


 . 

For example, we can use this expression to estimate the 

magnitude of the energy levels for electrons in an atom, for 

which m = 9.1×10
-28

 g and a ~3×10
-8

 cm, and for nucleons in 

a nucleus, for which m = 1.6×10
-24

 g and a ~5×10
-13

 cm. The 

energies come out to be ~30 eV and 6 MeV, respectively; 

values which are typical in atomic and nuclear physics. 

Notice that if an electron were in a nucleus, it would have 

energies of the order 10
4
 MeV!  

 

 
 

Figure 5.12 Bound states of a particle in a cubical box of 

width a. 
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Table 5.1. The first few energy levels of a particle in a 

cubical box. 
 

 
 

5.7. Parity  
 

As mentioned in section 2.11, parity is the effect of a 

reflection of the coordinates, through the origin: r-r, on 

the observable properties of the system, such as a potential 

and wave function of a nucleus. If a system is left 

unchanged by the parity operation, the system is symmetric, 

even parity or positive parity, then we expect that none of 

the observable properties should change as a result of the 

reflection. While if the sign of the system changed, it is 

asymmetric with odd parity or negative parity. As a result of 

measuring the observable quantities, which depend on |ψ|
2
, 

we have the following reasonable assertion: 

 

If V(r) =V(-r) then | Ψ(r) |
2
 = | Ψ(-r) |

2
, or Ψ(r) = ±Ψ(-r) 

 

That is: 
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If Ψ(r) = +Ψ(-r) then symmetric, even or positive parity 

If Ψ(r) = -Ψ(-r) then asymmetric, odd or negative parity. 

 

and its reverse is also true: 

 

if | Ψ(r) |
2
 ≠ | Ψ(-r) |

2
    then  V(r) ≠V(-r)  

 

That is the system is not invariant with respect to parity. 

 
 
 

In Cartesian coordinates change of sign by (x, y, z) to     

(-x, -y, -z) and in Spherical coordinates change of sign by (r, 

θ, θ) to (r, π - θ, θ + π). 

For physical systems, which are not subjected to an 

external vector field, we expect that these systems will 

remain the same under an inversion operation, or the 

Hamiltonian is invariant under inversion. If ψ(r) is a solution 

to the wave equation, applying the inversion operation we 

get: 

 

HΨ(-r) = EΨ(-r)                                                       5.96 

 

which shows that ψ (−r) is also a solution. A general 

solution is, therefore, obtained by adding or subtracting the 

two solutions. 

 

H[Ψ(r) ± Ψ(-r)]= E[Ψ(r) ± Ψ(-r)]                          5.97 

  

Since the function ψ+(r) = ψ(r) + ψ(−r) is manifestly 

invariant under inversion, it is said to have positive parity, or 

its parity, denoted by the symbol π , is +1. Similarly,      

ψ−(r) = ψ(r) − ψ(−r) changes sign under inversion, so it has 

negative parity, or π = -1. The significance of Eq.5.97 is that 
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a physical solution of our quantum mechanical description 

should have definite parity; which is the condition we have 

previously imposed on our solutions in solving the wave 

equation (see section 5.5.3). Notice that there are functions, 

which do not have definite parity, for example,             

Csinkx + Dcoskx. This is the reason that we take either the 

sine function or the cosine function for the interior solution 

in section 5.5.3. In general, one can accept a solution as a 

linear combination of individual solutions, all having the 

same parity. A linear combination of solutions with different 

parities has no definite parity and is, therefore, unacceptable.  

In spherical coordinates, the effect of the transformation 

on the spherical harmonic function )(~),(   

 
 mim

m PeY  

is: 

)()1()(

)1(













mmm

immimimim

PP

eeee





                           5.98 

 

So the parity of ),( 
mY  is (-1)

ℓ
. In other words, the parity 

of a state is even with a definite orbital angular momentum 

is even, and odd if ℓ is odd. All eigenfunctions of the 

Hamiltonian with a spherically symmetric potential are 

therefore, either even or odd in parity.  
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Problems 
 

5-1. An electron‟s position is known to an accuracy of 

about 10
-8

 cm.  

a- How accurately can its velocity be known? 

b- Find the uncertainty in the position 1.0 sec later. 

 

5-2. A typical atomic nucleus is about 5.0×10
-15

m
 

in 

radius. Use the uncertainty principle to place a lower limit 

on the energy an electron must have if it is to be part of a 

nucleus. 

 

5-3. The range of the potential between two hydrogen 

atoms is approximately ˚A. For a gas in thermal equilibrium, 

obtain a numerical estimate of the kinetic energy below 

which the atom-atom scattering is essentially s-wave when 

ka ≤ 1. 

 

5-4. a- In Bohr‟s original theory of the hydrogen atom 

(circular orbits), what postulate led to the choice of the 

allowed energy levels? 

 b- Later de Broglie pointed out a most interesting 

relationship between the Bohr postulate and the de Broglie 

wavelength of the electron. State and derive this 

relationship. 

 

5-5. Derive Eq. 5.16 from the relativistic equation for the 

total energy E of a particle of mass m and momentum p  

(Eq.1.20).  

 

5-6. Prove that the phase velocity υph is always greater than 

or equal to the particle velocity υ, while it is equal to the 

group velocity υg. 
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5-7. An electron has a de Broglie wavelength of 2.0×10
-12

 

m. Find its kinetic energy and the phase and group velocities 

of its de Broglie waves. What will be the wavelength of a 

proton of the same velocity (υ= υg) of the electron? 

 

5-8. Prove that the Schrödinger equation Eq. 5.29 is linear. 

In other words, show that if ψi and ψj both are solutions, 

(Aψi +Bψi) is also a solution. 

 

5-9. For a free particle described in section 5.5.1, show 

that the kinetic energy T of the particle is exactly ħ
2
k

2
/2m by 

calculating <T> and <T
2
> - <T>

2
. 

 

5-10. For a plane wave incident on a step potential (Fig 

5.4), calculate the reflection coefficient R for the case in 

which   E < Vo. 

 

5-11. What ratio E/Vo is necessary for scattering from one-

dimensional step potential so that the transmission 

probability will be 50 percent? 

 

5-12. A stream of electrons, each having an energy E = 4 

eV is directed toward a potential barrier of height Vo = 5 eV. 

The width of the barrier is 2× 10
-7

 cm.  

a- Calculate the percentage transmission of this beam 

through this barrier.  

b- How is this affected if the barrier is doubled in width? 

 

5-13. Assume that an alpha particle has en energy of 10 

MeV and approaches a potential barrier of height 30 MeV. 

Determine the width of the barrier if the transmission 

coefficient is 0.002. 
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5-14. Derive Eq.5.56 for the penetration factor.  

 

5-15. Derive the condition for perfect transmission through 

a rectangular potential barrier. 

 

5-16. Obtain the amplitude for the wave reflected from a 

rectangular potential barrier and show directly that 

probability is conserved in the collision process. 

 

5-17. For a particle (mass m, quantum number n) in an 

infinite square well of width a:  

a- What is the probability of finding the particle within a 

distance є of the left-hand edge?  

b- Find the limit as n → ∞.  

c- For finite n, find the limit as є/a << 1. 

 

5-18. Show that <x
2
> = a

2
/3 – a

2
/(2n

2
π

2
) for the particle in 

an infinite square well with limits (0, a).  

 

5-19. An object in one dimension is described by a wave 

function: 

                  √              

                                         

 

a- What is the probability of finding the object within the 

interval (0, 0.5)? 

b- What is the average position of the object? 

 

5-20. Find and draw the angle between the angular 

momentum vector L and the z-axis for all possible 

orientations when ℓ = 3.  
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5-21. Show that for a spherical potential V(r) such that 

V(r→∞) = 0, the radial solution of Eq.5.91 for a bound state 

has the asymptotic solution:  (   )      where κ is 

given by 
 

 
 2 2  o  | |. Also show that Eq.5.91 is 

satisfied for r→0 by a solution: R(r→0) ~ r
ℓ
.   

 

5-22. To some approximation, a medium weight nucleus 

can be regarded as a flat-bottomed potential with rigid walls. 

To simplify this picture still further, model a nucleus as a 

cubical box of length equal to the nuclear diameter. 

Consider a nucleus of iron-56 which has 28 protons and 28 

neutrons. Estimate the kinetic energy of the highest energy 

nucleon. Assume a nuclear diameter of 10
−12

 cm (this is a 

full derivation of Eqs.5.94 and 5.95 from Eq.5.93). 

 

5-23. A particle of mass m is just barely bound by a one-

dimensional potential well of width L. Find the value of the 

depth Vo.  

 

5-24. Suppose you are given the result for the transmission 

coefficient T for the barrier penetration problem, one-

dimensional barrier of height Vo extending from x=0 to 

x=L, 

  0  
  
 

  (    )
       1

  

  

 
where K

2
 =2m (Vo − E)/ h

2
 is positive (E < Vo).  

a- From the expression given, deduce T for the case         

E >Vo without solving the wave equation again.  

b- Deduce T for the case of a square well potential from 

the result for a square barrier. 
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5-25. Compare the ground state energy of a particle in a 

cubical box of width a, with that of the particle in a one 

dimensional infinite well of width a. 

 

5-26. Explain the expected change of the wave function If 

one interchanges the spatial coordinates of two protons in: 

a-  A state of total spins 0. 

b-  A state of total spins 1. 
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CHAPTER 6 
 

 

NUCLEAR FORCES AND 

INTERACTIONS 
 

There is a dominant short-range part of the nucleon-

nucleon interaction potential, which is central and provides 

the overall shell-model potential. A part, whose range is 

much smaller than the nuclear radius, tends to make the 

nucleus spherical and to pair up with nucleons. A second 

part, whose range is of the order of the nuclear radius, tends 

to distort the nucleus. There is a spin-orbit interaction and 

spin-spin interaction. The force is charge independent 

(Coulomb interaction excluded). The force saturates.  

 

6.1. Introductory Remarks 
 

One of the aims of nuclear physics is to calculate the 

energies and quantum numbers of nuclear bound states. In 

atomic physics, one can do this starting from first principles. 

In fact, Coulomb‟s law (or more generally the equations of 

electromagnetism) determines the interactions between 

electrons and nuclei. Spin corrections and relativistic effects 

can be calculated perturbatively to a very good accuracy 

because of the smallness of the fine structure constant          

α = e
2
/(4πε0ħc) ≈ 1/137. Together with the Pauli exclusion 

principle which leads to the shell structure of electron 

orbitals, these facts imply that one can calculate numerically 

spectra of complex atoms despite the difficulties of the 

many-body problem.  
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Unfortunately, none of these holds in nuclear physics. 

Forces between nucleons are neither simple nor fully 

understood. One of the reasons for this is that the 

interactions between nucleons are “residuals” of the 

fundamental interactions between quarks inside the 

nucleons. In that sense, nuclear interactions are similar to 

Van der Waals forces between atoms or molecules, which 

are also residual or “screened” Coulomb interactions. For 

these reasons, forces between nucleons are described by 

semi-phenomenological forms, e.g., the potential proposed 

by Yukawa in 1939, which are only partly deduced from 

fundamental principles.  

The subject of nucleon–nucleon potentials is very 

complex and we will give only a qualitative discussion. Our 

basic guidelines are the following facts: 

1- Protons and neutrons are spin 1/2 fermions and, 

therefore, obey the Pauli Exclusion Principle which 

states, in a closed system no two identical particles can 

be in the same energy state. More details will be clarified 

in the following sections. 

2- Nuclear forces are attractive and strong, since binding 

energies are roughly a 10
6
 times the corresponding 

atomic energies. They are, however, short range forces (a 

few fm). The combination of strength and short range 

makes 2 nucleon systems only marginally bound but 

creates a rich spectrum of many-nucleon states. 

3- Nuclear forces are "charge independent". They are blind 

to the electric charge of nucleons. If one were to “turn 

off” Coulomb interactions, the nuclear proton–proton 

potential would be the same as the neutron–neutron 

potential. A simple example is given by the binding 

energies of isobars, such as tritium and helium-3:          

BE (
3
H) = 8.492MeV > BE (

3
He) = 7.728MeV. If the 
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difference ∆BE = 0.764MeV is attributed to the Coulomb 

interaction between the two protons in 
3
He,                

∆BE = e
2
 < 1/r12 > /4πε0, one obtains a very reasonable 

value for the mean radius of the system: R ≈ 2 fm (this 

can be calculated or measured by other means). We shall 

come back to this question in a more quantitative way 

when we discuss isospin, section 6.4. 

4- Nuclear forces saturate. As we will see in the next 

section, this results in the volumes and binding energies 

of nuclei being additive and, in first approximation, 

proportional to the mass number A. This is a remarkable 

fact since it is reminiscent of a classical property and not 

normally present in quantum systems. It appears as if 

each nucleon interacts with a given fixed number of 

neighbors, whatever the nucleus is. 

Reversing the order of inference, physicists could have 

derived the form of Coulomb‟s law from the spectrum of 

bound states of the hydrogen atom. This is not possible in 

nuclear physics because there is only one two-nucleon 

bound state, the deuteron. In the next subsection, we will 

find that there is much to be learned from this fact but it will 

not be sufficient to derive the nucleon–nucleon potential in 

all its details. To do this, we will need to attack the more 

difficult problem of nucleon–nucleon scattering. 

  

6.2. The Deuteron 
 

There is only one A = 2 nucleus, the deuteron, and it has 

no excited states. It is the simplest bound state of nucleons 

and, therefore, gives an ideal system for studying the nuclear 

force and nucleon-nucleon interaction. Its binding energy is 

a very precisely measured quantity and can be determined in 

three different ways. First by mass spectroscopy, we have 
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(BEd = 2.22463 ± 0.00004 MeV), then by directly bringing a 

proton and neutron together to form 
2
H and measuring the 

energy of gamma ray photon emitted, we have: 

                          
1
H + n →   2H + γ                                                   6.1 

 

The deduced binding energy is equal to the observed energy 

of the photon less a small recoil correction (BEd = 2.224589 

± 0.000002 MeV). Finally by using the reverse reaction 

called photo-dissociation, in which a γ-ray photon breaks 

apart a deuteron (2.224 ± 0.002 MeV), all are in excellent 

agreement with each other.    

Note that BE is quite small compared to typical nuclear 

binding energies of 8 MeV per nucleon. 

 

6.2.1. Nuclear force is spin dependent 
 

The deuteron quantum numbers (J
π
 = 1

+
) and total 

angular momentum (spin) is: 

I = sn + sp + ℓ                                                          6.2                                                                        

The measured spin of the deuteron is I = 1. Since the 

neutron and proton spins can be either parallel (for a total of 

1) or antiparallel (for total of 0), there are four possibilities 

to couple sn, sp, ℓ to get total I =1:   

  

a- sn and sp parallel with ℓ = 0 

b- sn and sp antiparallel with ℓ = 1 

c- sn and sp parallel with ℓ = 1 

d- sn and sp parallel with ℓ = 2 
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The other important property of deuteron is the magnetic 

dipole moment µd = 0.857 μN, (μN is the nuclear magneton). 

We also note (in section 2.9) that, to a good approximation, 

µd = µp + µn. This suggests that the magnetic moment comes 

only from the spins of the constituents, implying that the 

nucleons are in a state of vanishing orbital angular 

momentum, ℓ= 0. In fact, this turns out only to be a good 

first approximation since the deuteron is slightly deformed, 

possessing a small quadrupole moment. This requires that 

the wave function has a small admixture of ℓ = 2.  

Both ℓ = 0 and ℓ = 2 (case a and b)are consistent with the 

parity of the deuteron since for two-nucleon states, the parity 

is (−1)
ℓ 

, in the context of the above discussion, one can 

assume the discrepancy to arise from  a small mixture of d 

state (ℓ=2) in the deuteron wavefunction: 

 

Ψ = asΨ (ℓ=0) +adΨ (ℓ=2)                                    6.3 

 

 and consequently its magnetic moment can be calculated as: 

 

)2()0( 22    ds aa                               6.4 

 

where 

 

μ (ℓ=0) = 0.879804 μN (calculated), and 

 

μ (ℓ=2) = (1/4) (3 – gsp - gsn) μN =0.3100982 μN   

                 

with gsp = 2μp = 5.585691, gsn = 2μn = -3.826084, the 

observed value is consistent with 96.02 sa , and 04.02 da ; 

that is, the deuteron is 96% ℓ=0 and only 4% ℓ=2. Then, the 

assumption of the pure ℓ=0 state, which we made in 
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calculating the well depth, is thus pretty good but not quite 

exact.      

Since the deuteron has spin-1 and is (mostly) in an ℓ = 0 

state, the spins of the nucleons must be aligned, i.e., the total 

spin, stot = sn + sp, must take on the quantum number s = 1. 

The other possibility is s = 0. Since the deuteron is the only 

bound state, we can state that: 

 

n p (s = 1) bound                       n p (s = 0) unbound 

 

Then we conclude that the neutron–proton potential is spin-

dependent. 

What about the neutron–neutron and proton–proton 

potentials and the fact that there are no bound states for 

these two systems (no nucleus exist of only two neutrons or 

only two protons)? If the strong interactions do not 

distinguish between neutrons and protons, the non-existence 

of an s = 0 neutron–proton state is consistent with the non-

existence of the analogous pp and nn states: 

 

n n (s = 0)  unbound          p p (s = 0)  unbound, 

 

i.e., all nucleon–nucleon s = 0, ℓ = 0 states are unbound 

which is incorrect. The non-existence of pp and nn s = 1,     

ℓ = 0 states is explained by the Pauli principle. This 

principle requires that the total wave-function of pairs of 

identical fermions be antisymmetric. Loosely speaking, this 

is equivalent to saying that when two identical fermions are 

at the same place ( ℓ = 0), their spins must be anti-parallel. 

Thus, the s = 1, ℓ = 0 proton–proton and neutron–neutron 

states are forbidden.  

We make the important conclusion that the existence of a 

(np) bound state and the non-existence of nn and pp bound 



214 

 

states is consistent with the strong force not distinguishing 

between neutrons and protons but only if the force is spin-

dependent. 

The existence of an s = 1 state and non-existence of s = 0 

states would naively suggest that the nucleon–nucleon force 

is attractive for s = 1 and repulsive for s = 0. This is 

incorrect. In fact, the nucleon–nucleon force is attractive in 

both cases. For s = 1 it is sufficiently attractive to produce a 

bound state while for s = 0, it is not quite attractive enough. 

We can understand how this comes about by considering 

the 3-dimensional spherical well potential shown in Fig. 6.1: 

 

V (r) = −V0    r < R   

V (r) = 0        r > R                                                      6.5 

 

while it is hardly a realistic representation of the nucleon–

nucleon potential, its finite range, R, and its depth V0 can be 

chosen to correspond more or less to the range and depth of 

the real potential. In fact, since for the moment we only want 

to reproduce the deuteron binding energy and radius, we 

have just enough parameters to do the job.  

Let us model the nuclear force as a three dimensional 

spherical well with radius R. The bound states are found by 

solving the Schrödinger eigenvalue equation Eq.5.23 for the 

spherically symmetric s state:    
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         6.6 

 

Here, V (r) is the potential and m is the reduced mass of 

proton and neutron:  
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This arises from working in the relative coordinate only.  

 

 

Figure 6.1. A spherical well potential and the wave-function 

Ψ(r) or R(r) = u(r)/r. The depth and width of the well are 

chosen to reproduce the binding energy and radius of the 

deuteron. 

 

It is easier to work with u(r) = rR(r), which satisfies the 

condition: 

 

)()()(
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22
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                           6.8 

 

As well as u (0) = 0. The equation in the interior well 
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                                                                                    6.9 

 

       

has the solutions for E < 0 oscillate for r < R. 

 

RrEV
m
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       6.10 

 

and outside the well, we find the standard damped 

exponential: 

 

RrE
m

ErBru  )(
2
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        6.11 

 

Requiring continuity at r = R of u(r) and u
/
(r), we find 

the condition that determines the allowed values of E and 

radius R of the deuteron: 

 

EV

E

k
kR






0

cot


                               6.12a 

or  

 

k cot kR = −κ                                                          6.12b 

 

We note that for r → 0, the function on the left of        

Eq. 6.12b, k cot kr, is positive and remains so until kr = π/2; 

see Fig. 5.7. Since the quantity on the right is negative, the 

requirement for at least one bound state is that there exists 

an energy E << 0 such that: 

0)0(
)(

2
02
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 uEu(r)u(r)V
dr
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2


kR                                                                    6.13 

 

i.e., we can fit at least 1/4 of a wave inside the well. Since it 

is known from experiment of neutron–proton scattering that 

the deuteron has only one bound state at energy -2.224573 ± 

0.000002 MeV, then k(E) < k(E=0) and kR>π/2 Substituting 

k(E=0) in Eq.6.13, we see that: 
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The existence of a single s = 1 state and the non-

existence of s = 0 states can be understood by supposing that 

the effective values of V0R
2
 are respectively slightly greater 

than or slightly less than 109MeV fm
2
 respectively. The 

deuteron binding energy is correctly predicted if: 

 

V0R
2
 (s = 1) = 139.6 MeVfm

2
                                   6.15 

 

This can be verified by substituting it into Eq.6.12a along 

with the energy E = BEd =−2.224573 MeV. 

 Data from neutron-proton scattering shows that there is 

no bound state for s = 0 since V0R
2
 (s = 0) ≈ 93.5 MeV fm

2
 is 

slightly less than 109 MeV fm
2
. Including scattering data, we 

can determine both V0 and R: 

 

V0(s = 1) = 46.7MeV      R = 1.73 fm                       6.16 

 

The wavefunction is shown in Fig. 6.1. The fact that BEd 

is small causes the wavefunction to extend far beyond the 
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effective range R of the potential and explains the 

anomalously large value of the deuteron radius (2.73 fm). 

The scattering data allow one to estimate the values of V0 

and R for s = 0. One finds for the proton–neutron system:  

 

V0(s = 0) = 12.5 MeV   R = 2.79 fm                         6.17 

 

This potential is quite different from the s = 1 potential. 

 In summary, the strong interactions have a strength and 

range that places them precisely at the boundary between the 

interactions that have no bound states (e.g., the weak 

interactions) and those that have many bound states (e.g., the 

electromagnetic interactions). 

 

6.2.2. Yukawa potential and its generalizations 
 

It is necessary to consider more realistic potentials than 

the simple potential Eq.6.5 to completely describe the results 

of nucleon–nucleon scattering and to understand the 

saturation phenomenon on nuclear binding.  

The theoretical explanation of the saturation of nuclear 

forces is subtle. The physical ingredients are the short range 

attractive potential (r ≈ 1 fm), a hard core repulsive force at 

smaller distances (r < 0.5 fm), and the Pauli principle. Being 

the result of these three distinct features, there is no simple 

explanation for saturation. It is simple to verify that the Pauli 

principle alone cannot suffice and that any power law force 

does not lead to saturation.  

Many properties of nuclear forces can be explained 

quantitatively by the potential proposed by Yukawa in 1939: 
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The factor ħc is present, so that the coupling constant g is 

dimensionless. As shown in Chapter-One, forces between 

particles are due to the quantum exchange of virtual 

particles. The range r0 of a force is the Compton wavelength 

ħ/mc of the exchanged particle of mass m. Yukawa noticed 

that the range of nuclear forces r0 ≈ 1.4 fm, corresponds to 

the exchange of a particle of mass about 140 MeV. This is 

how he predicted the existence of the π meson. The discovery 

of that particle in cosmic rays was a decisive step forward in 

the understanding of nuclear forces.  

When applied to a two-nucleon system, the potential 

Eq.5.18 is reduced by a factor of (mπ/2mp)
2
 ≈ 10

−2
 because 

of spin-parity considerations. A dimensionless coupling 

constant of g ≈ 14.5 explains the contribution of the π meson 

to the nucleon–nucleon force. It is necessary to add other 

exchanged particles to generate a realistic potential. In fact, 

the general form of nucleon–nucleon strong interactions can 

be written as a linear superposition of Yukawa potentials: 

 

)exp()( r
r

c
grV ii

i




                                   6.19 

 

where the sum is over a discrete or continuous set of 

exchanged particles with masses given by µi = mic/ħ. 
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6.3. Nuclear force is Tensor dependent 
 

However, we need some more elements to explain 

saturation and prevent a nuclear “pile-up” where all 

nucleons collapse to an object of the size of the order of the 

range of the strong interactions.  

First, one must add a strong repulsive shorter range 

potential, called a “hard core” interaction. This potential is 

of the form Eq.6.18 with a negative coupling constant g and 

a range r0 ≈ 0.3 fm. The physical origin of the repulsive core 

is not entirely understood but it certainly includes the effect 

of the Pauli principle that discourages placing the 

constituent quarks of nucleons near each other. 

Second, spin effects and relativistic effects must be taken 

into account.  

One writes the potential as the sum of central potentials 

with spin-dependent coefficients: 

 

V(r) = VC(r) + ΩTVT(r) + ΩSOVSO(r) + ΩSO2VSO2(r)     6.20 

 

where VC is a pure central potential and the other terms are 

spin dependent. The most important is the tensor potential 

VT "spin-position interactions" with: 

 

ΩT = [3(s1 · r/r) (s2 · r/r) − s1 · s2]                     6.21 

 

here s1 and s2 are the Pauli spin matrices for the two nucleon 

spins. This term has the important effect of inducing a 

correlation between the position and spin of the two 

nucleons. Fig. 6.2 shows for the s = 1 state, the tenser 

potaintial makes the configuration on the right (s · r = 0) 

have a different potential energy than the two configurations 

on the left (s · r ≠ 0). This results in the permanent 
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quadrupole moment of the deuteron. It is also the dominant 

force in binding the deuteron. However, it averages to zero 

for multi-nucleon systems where it plays a minor role.  

The last two terms in Eq.6.20 are the spin-orbit 

interactions: 

 

ħΩSO = (s1 + s2) · L                                               6.22 

 

ħ2ΩSO2 = (s1 · L) (s2 · L) + (s2 · L) (s1 · L)                6.23 

 

where L is the orbital angular momentum operator for the 

nucleon pair. Fig. 6.3 shows the most important 

contributions to the nucleon–nucleon potential in the s = 0 

state (left) and the s = 1 state (right) (the so-called Paris 

potential). The two central potentials VC depend only on the 

relative separations. The tensor potential VT of the form 

Eq.6.21 is responsible for the deuteron binding and for its 

quadrupole moment while the spin-orbit potential is VSO. 

For spin-anti-aligned nucleons (s = 0), only the central 

potential contributes. 

 

 
 

Figure 6.2. The permanent quadrupole moment of the 

deuteron  due to the tensor potential for the s = 1 state.  
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Figure 6.3. The most important contributions to the 

nucleon–nucleon potentials in the s = 0 state (left) and the 

s = 1 state (right). 

 

6.4. Isospin Space and Charge Independence 
 

Finally, we note that to correctly take into account the 

charge independence of nuclear forces the formalism of 

isospin must be used. Charge independence is more subtle 

than just saying that protons and neutrons can be replaced by 

one another in nuclear forces. It is formalized by using the 

concept of “isotopic spin” or, simply, isospin T, which was 

introduced by Heisenberg in 1932.  

 

6.4.1. One-nucleon states 
 

The interactions of a nucleon with its other surrounding 

nucleons in most cases do not depend on whether the 
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nucleon has spin components ms = +1/2 or -1/2 relative to an 

arbitrary chosen z-axis. That is, there is no need to 

distinguish in the formalism of nuclear physics between a 

spin-up nucleon and a spin-down nucleon. The multiplicity 

of spin orientations (two-state system for a single nucleon) 

may enter into the equations, but the actual value of the 

projection does not appear, except when a magnetic field is 

applied. The formalism for nuclear interactions may depend 

on the multiplicity of nucleon state (two) but it is 

independent of whether the nucleons are protons or 

neutrons. 

The projections of the spin vector of the nucleon (isospin 

T) are measured with respect to an arbitrary axis T3, called 

the "3-axis" in a coordinate system whose axes are labeled 1, 

2, 3, in order to distinguish it from the laboratory z-axis of 

the x, y, z, coordinate system. We therefore introduced an 

abstract three-dimensional Euclidean-like space called 

“isospin space.” The proton and the neutron can be 

considered as two different states T3 = ±1/2 of a single 

physical object of isospin T = 1/2, the nucleon. The spin 

formalism in isospin space is the same as that for normal 

spin in the Euclidean space. The isospin obeys the usual 

rules for angular momentum vectors, thus, we use an isospin 

vector T of length:  

 

)1(  TTT                                                    6.24 

 

with 3-axis projections T3 = ħmt.   
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6.4.2. Two-nucleon system 
 

The isospin states of a two-nucleon system are 

constructed in the same manner as the states of two spin-1/2 

particles. The total isospin T of the system corresponds to 

symmetric isospin triplet state T = 1 or antisymmetric 

isospin singlet state T = 0. 

 The generalized Pauli principle states that two identical 

fermions must be in an antisymmetric state. If the proton and 

the neutron were truly identical particles up to the projection 

of their isospin along the axis T3, a state of several nucleons 

should be completely antisymmetric under the exchange of 

all variables, including isospin variables. If we forget about 

electromagnetic interactions and assume exact invariance 

under rotations in isospin space, the Pauli principle is 

generalized by stating that an A-nucleon system is 

completely antisymmetric under the exchange of space, spin 

and isospin variables. This assumption does not rest on as 

firm foundation as the normal Pauli principle and is only an 

approximation. However, we can expect that it is a good 

approximation up to electromagnetic effects.  

The generalized Pauli principle restricts the number of 

allowed quantum states for a system of nucleons. A series of 

simple but important consequences follow from these 

considerations.  

1- The Hamiltonian of two (or more) nucleons is invariant 

under rotations in isospin space so we can expect that the 

energies of all states in a given multiplet are equal 

(neglecting electromagnetic effects). In the two-nucleon 

system, rather than three independent Hamiltonians (i.e., 

one for p−p, one for p−n and one for n−n), there are only 

two, one Hamiltonian for the three T = 1 states and an 

independent Hamiltonian for the T = 0 state. 
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2- The antisymmetric isospin T = 0 state is the state of the 

deuteron, the only nucleon–nucleon bound state. Indeed 

the deuteron has a symmetric spatial wavefunction; it is 

mainly an s-wave, from Eqs-5.80 and 5.92:  
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which is even (odd) if ℓ is even (odd). Thus, Ψ to be anti-

symmetric, one can have two possibilities:  

 

ℓ even,  S = 0    (space symmetric, spin anti-symmetric)  

ℓ odd,   S = 1    (space anti-symmetric, spin symmetric)  

 

These are called T = 1 states, available to the n-p, n-n,   

p-p systems.  

By contrast, states which are symmetric (T = 0) are:  

 

ℓ even,  S = 1 

ℓ odd,   S = 0  

 

These are available only to the n-p system for which there is 

no Pauli Exclusion Principle. 

The ground state of the deuteron is, therefore, a T = 0 

state, i.e. ℓ = 0, s = 1, and a total angular momentum J = 1. 

 

3- The lowest T = 1 state is   ℓ = 0, s = 0, as mentioned 

above, is known to be unbound. The interaction is only 

slightly weaker than in the T = 0 state, there exists what 

is called technically a “virtual state,” nearly bound. 
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4- We see with this example that charge independence is 

more subtle than a simple invariance with respect to 

interchange of neutrons and protons. Otherwise, we 

would be sure to observe a neutron–neutron bound state 

(possibly unstable under β decay) in addition to the 

deuteron. We should, therefore, expect that the lowest      

T = 1 state in n-n and p-p to be also unbound, i.e., there is 

no stable di-neutron or di-proton.  

 

Isospin states of a system of A nucleons are constructed 

in the same way as total spin states of A spin-1/2 particles. If 

a nucleus has isospin T, we expect to observe 2T +1 isobar 

which has similar physical properties. This is the case for the 

isobars 
11

B and 
11

C which form an isospin 1/2 doublet. 

For a nucleus (Z, N), the isospin follows coupling rules 

identical with the rules of ordinary angular momentum 

vectors. The 3-axis component of the total isospin vector T 

is the sum of the 3-axis components of the individual 

nucleons and thus for any nucleus T3 expressed in units of ħ: 

||
2

1
ZNT                                                               6.26 

 

Inserting the value of T into the above equation, we expect 

to observe at least 2T +1 = |N −Z|+1 isobars of different 

charges, but with similar nuclear properties.  

In actual physics, the operator T plays a special rule, 

since the electric charge of a system of A nucleons is related 

to the total isospin T by: 

 

Q = T + A/2                                                               6.27 
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Problems 
 

6-1. A neutron and a proton can undergo radioactive 

capture at rest: p + n → d + γ. Find the energy of the 

photon emitted in this capture. Is the recoil of the 

deuteron important? 

 

6-2. Calculate the minimum photon energy necessary to 

dissociate the deuteron, i.e., γ + d → p + n. Take the 

deuteron binding energy to be 2.224589 MeV and use a 

nonrelativistic approach. 

 

6-3. A deuteron of mass M and binding energy B             

(B << Mc
2
) is disintegrated into a neutron and a proton by 

a gamma ray of energy Eγ. Find, to lowest order in B/Mc
2
, 

the minimum value of (Eγ − B) for which the reaction can 

occur. 

 

6-4. The deuteron is a bound state of a proton and a 

neutron of total angular momentum J = 1. It is known to 

be principally an S(ℓ = 0) state with a small admixture of 

a D(ℓ = 2) state. 

a- Explain why a P state cannot contribute. 

b- Explain why a G state cannot contribute. 

 

6-5. The deuteron 
2
H has J = 1

¯
 and a magnetic moment (μ 

= 0.857μN) which is approximately the sum of proton and 

neutron magnetic moments. 

a- From these facts, what can one infer concerning the 

orbital motion and spin alignment of the neutron and 

proton in the deuteron? 

b- How might one interpret the lack of exact equality of 

μ and μn+μp? 
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c- How can the neutron have a nonzero magnetic 

moment? 

 

6-6. What fraction of the time do the neutron and proton in 

the deuteron spend beyond the range of their nuclear 

force? 

 

6-7. Prove that the di-neutron cannot exist. 

 

6-8. According to a simple-minded picture, the neutron 

and proton in a deuteron interact through a square well 

potential of width a = 1.9×10
−15

 m and depth V0 = 40 

MeV in an ℓ = 0 state. Start with Eq.6.8.  

a- Calculate the probability that the proton moves within 

the range of the neutron. Use the approximation that 

mn = mp = m, ka = π/2, where   √
 (    )

ħ
   and ε is 

the binding energy of the deuteron. 

b- Find the mean-square radius of the deuteron. 

 

6-9. From Eq.6.12, plot Vo against R for R in the range of 

1.0 to 3.0 fm. Discuss the sensitivity of Vo to R.  

 

6-10. Show that Eq.6.12 can be written in the transcendental 

form            

Where     √ (    )  . 

 

a- Evaluate the parameter b for R=2fm, by using the 

reduced mass. 

b- Solve the transcendental equation in two ways: 

graphically and iteratively using programmable 

calculator or suitable computer software.    
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6-11. The only bound two-nucleon configuration that occurs 

in nature is the deuteron with total angular momentum J = 

1 and binding energy ~2.22 MeV. 

 

a- From the above information alone, show that the n − p 

force must be spin dependent. 

b- Write down the possible angular momentum states for 

the deuteron in an LS coupling scheme. What general 

liner combinations of these states are possible? 

Explain. 

c- Which of the states in (b) are ruled out by the 

existence of the quadrupole moment of the deuteron? 

Explain. Which states, in addition, are ruled out if the 

deuteron has pure isospin T = 0? 

 

6-12. Consider a nonrelativistic two-nucleon system. 

Assume the interaction is charge independent and 

conserves parity. 

a- By using the above assumptions and the Pauli 

principle, show that S
2
, the square of the two-nucleon 

spin, is a good quantum number.  

b- What is the isotopic spin of the deuteron? Justify your 

answer. 

 

6-13. Both nuclei         
  

 
   have isospin T = 0 for the 

ground state. The lowest T = 1 state has an excitation 

energy of 2.3 MeV in the case of    
  and about 15.0 

MeV in the case of   
  . Why is there such a marked 

difference? Indicate also the basis on which a value of T 

is ascribed to such nuclear states. (Consider other 

members of the T = 1 triplets and explain their 

relationship in terms of systematic nuclear properties, 

such as the excited states with T = 1 of   
   form an 
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isospin triplet which consists of          
  

 
  

 
  . 

        
  

 
   have |T3| = 1, so they are the ground states 

of the triplet. Likewise,         
  

 
   are the ground states 

of the isospin triplet of the T = 1 excited states of    
  ) 
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CHAPTER 7 
 

NUCLEAR MODELS 
 

Different model approaches try to accentuate various 

aspects of nuclear structure in a simple and schematic way. 

No single model, as yet, is detailed enough to encompass all 

aspects of the nucleus. 

 

7.1. Introduction 
 

In order to understand the processes of atomic electrons, 

we began the development by considering the Coulomb 

force between pairs of charged particles and proceeded to 

consideration of the energy levels which are associated with 

electrons in an atom. Great progress in this study has been 

possible because the mathematical form of coulomb's law is 

simple and well known and because the spectroscopy of 

atoms is rich with energy levels. 

The situation in nuclear physics is quite different. The 

mathematical form of the nuclear force is not yet known and 

we know that a simple form (such as a potential function 

dependent only on the separation of two nucleons) is not a 

possible solution to the problem. 

On the basis of the available experiments and 

information, it is understandable that we cannot discuss the 

nuclear force in detail. Yet, there are some qualitative 

observations that can be made. The nuclear force has short 

range, probably no greater than nuclear dimensions, of the 

order of 10
-13

 or 10
-14

 cm. This specifically nuclear force 

must be strongly attractive in order to overcome the 

electrostatic repulsion between protons, but it may also be 
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repulsive to some extent to prevent the collapse of the 

nucleus. Another attribute the nuclear force possesses is 

charge independence: that the nuclear force between two 

protons is the same as that between two neutrons. 

In the absence of detailed information about the nuclear 

force, theoretical descriptions of nuclei have been centered 

on models for nuclear structure which are admittedly 

inadequate but which represent to some extent the observed 

phenomena. 

Among the models currently in use in nuclear physics are 

the Fermi-gas model, the liquid-droop model, the shell 

model, the collective model, the cluster model, the optical 

model, the direct reaction model, and recently the standard 

model. In this chapter, we will discuss the first four models 

but highlight on the shell model.     

 

7.2. Fermi-Gas Model  
 

Fermi gas model is sometimes called the statistical model 

or the uniform Particle model. It was proposed by E. Wigner 

(1937). It assumes that as a result of the very strong 

interactions between nucleons, the motions of individual 

nucleons cannot be considered in detail, but must be treated 

statistically, i.e., obeying Fermi-Dirac statistics. The 

mathematical treatment of nuclei in this model resembles the 

discussion of free electron gas in a solid state physics, where 

electrons move quasi-freely in a background of positively 

charged ions. 
 

7.2.1. Fermi momentum and energy 
 

The theoretical concept of a Fermi-gas can be applied to 

systems of weakly interacting fermions. Then, nucleons are 
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considered as moving quasi-freely within the nuclear 

volume, the binding potential is generated by all nucleons, 

those neutrons and protons are distinguishable fermions and 

are therefore situated in two separate potential wells. 

As a very simple approximation, these nuclear potential 

wells are considered as rectangular. Each state is filled with 

two nucleons of the same type with different spin 

orientations, obeying Pauli Exclusion Principle. The two 

potentials, though, have slightly different shapes, mainly 

because of the Coulomb part: The well for protons is less 

deep because of the Coulomb potential by the amount Ec and 

externally; the l/r dependence of the Coulomb potential 

extends the range and the last bound nucleons have equal 

energy; and the zero coincides, as shown in Fig. 7.1.  

 

 

 
 

Figure 7.1. Sketch of the nuclear square well potentials and 

states. The double-degeneracy associated with nucleon 

intrinsic spin is presented. 
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Neglecting spin, the state's degeneracy n, i.e., the number 

of states of protons and neutrons within the spherical nuclear 

volume V is given by: 
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For the low excitation energy (the nucleus in its ground 

state), called the temperature T=0 limit, the lowest states 

will be filled pair wise up to a maximum momentum, called 

the Fermi momentum pF or Fermi level. The numbers of 

these states follow from integrating Eq. 7.1: 
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Since each state can be filled with two nucleons of the 

same type, then the number of neutrons and protons are: 
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where pF,n and pF,p are the Fermi momenta of neutrons and 

protons, respectively. Using our prior knowledge of the 

nuclear volume fmRARRV oo 21.1,
3

4

3

4 33   , we obtain 

for Z = N = A/2 and equal radius for the two separate 

potential wells of the protons and the neutrons a Fermi 

momentum: 
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The corresponding Fermi kinetic energy which is the 

energy of the highest occupied nucleon level becomes: 

 

MeV
m

p

m

p
E

pFNF

F 33
22

2

,

2

,
                                         7.5 

 

where m denotes the nucleon mass (mn ≈ mp). 

The difference BE between the edge of the potential well 

and the Fermi level is rather constant for different nuclei and 

equals the average binding energy per nucleon,              

BE/A ≈ 7 – 8 MeV. Hence, the depth of the potential well, 

Vo, is approximately independent of A and given by: 

 

Vo = EF + BE ≈ 40 MeV                                            7.6 

 

Eq. 7.6 shows that the kinetic and potential energies of 

the nucleons are of the same order. In this sense, nucleons 

are rather weakly bound in the nucleus (similar to the case of 

electrons in a metal).  

 

7.2.2. Nuclear symmetry energy    
 

The neutron potential well is deeper than the proton one, 

since the former has no Coulomb interaction. On the other 

hand, for a stable nucleus, the Fermi levels of the protons 

and the neutrons have to be the same, otherwise it would 

decay to an energetically more favorable state through a β 

transition. As a result, there are more neutron states than 

proton states occupied, which explains the fact that N > Z 

for heavier stable nuclei. 
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The binding energy as a function N – Z can be estimated 

using the Fermi-gas model: the mean kinetic energy per 

nucleon is. 

MeV
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The total kinetic energy of the nucleus is: 
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Hence, using Eq. 7.3 and 7.4, we get: 
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Again the radii of the proton and the neutron potential well 

have been taken as equal.  

This result can now be expanded around the symmetric 

case with N = Z = A/2. This expansion will lead to an 

expression for the symmetry energy and we shall be able to 

derive a value for the constant asy. Taking Z – N = Є, and     

Z + N = A, we can substitute in Eq. 7.9, Z = A/2(1 +Є/A); N 

= A/2(1 – Є/A), with Є/A << 1 and inserting the binomial 

expansion ...
2
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From the above equation it is clear that for fixed A, the 

kinetic energy has a minimum for N = Z. 

The first term corresponds to the volume energy; the 

second term has exactly the form of the symmetry energy in 

the Beth-Weizsäcker mass formula. Inserting the values of 

the various constants m, ћ, Ro, π, we obtain the result: 

 

MeVaMeVawhere
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                           7.11 

 

The numerical value is, however, about half the value of 

asy as determined in the next section. Without discussing this 

point here in detail, the difference arises from the fact that 

the nuclear well depth Vo is itself also dependent on the 

neutron excess N - Z and makes up for the missing 

contribution to the symmetry energy. 

Higher-order terms with a dependence (N -Z)
4
 /A

4
… 

naturally derive from the more general  (E(A,Z))  value.  

 

7.3. Liquid Drop Model  
 

The liquid drop model was first proposed by G. Gamow 

and then developed by N. Bohr (1937). This model also 

ignores the motion of individual nucleons. The observation 

is made that nuclear matter is essentially incompressible, 

which arises from the fact that the interior mass densities are 

approximately equal, since the radii of nuclei are 

proportional to A
1/3

, by analogy with a classical model for a 

liquid drop, where liquid drops of various sizes have the 

same interior density, the nucleus is assumed to have a 
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definite surface tension, with nucleons behaving in a manner 

similar to that of molecules in liquid. The decay of nuclei by 

the emission of particles is analogous to the evaporation of 

molecules from the surface of liquid. Nuclear fission is 

analogous to the division of a large drop of liquid into two 

smaller ones.  

In order to achieve a quantitative and more basic 

understanding of the binding energy of the nuclei, we use 

the liquid drop model to derive the Semi-Empirical Mass 

Formula SEMF, in which the binding energy or the mass of 

the nucleus is expressed as the sum of a number of terms, 

such as volume term, surface term, coulomb term, symmetry 

term, and pairing term. Actually, the last two terms are shell 

model corrections. 

 

7.3.1. Volume term 

 

For a liquid drop, the latent heat of evaporation is 

proportional to the drop mass and as it is defined as the 

average energy required to disperse the liquid drop into a 

gas, so is analogues to the binding energy per nucleon Bv/A:  

 

Latent heat = Bv/A = Q0Mm = av                              7.12 

       

where      Q0   is the heat of evaporation  

                Mm is the mass of each molecule 

                A    is the number of molecules  

                av    is a constant of a volume term 

Then for a nucleus of mass number A:  

 

Bv =  avA                                                                  7.13  
 

where  av = 15.6 MeV            
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7.3.2. Surface term 
 

The surface effect takes into account, in a simple way, 

the fact that nucleons at, or close to, the nuclear surface will 

have a reduced binding energy since only partial 

surrounding with nucleons is possible, for a nucleus with a 

finite radius. Let ƒ1 be a fraction of the number of molecules 

(nucleons) surrounding molecules (nucleus) inside the drop 

and ƒ2 be the fraction of molecules that are on the surface, 

then: 

  

B = Q0MmA(1 - ƒ2) + Q0MmAƒ1ƒ2  

 

    = avA(1 - ƒ2) - avAƒ1ƒ2                                         7.14 

 

where avA(1 - ƒ2) is the B.E of interior molecules  

      avAƒ1ƒ2  is the B.E of the molecules on the surface     

 

Rearrange the last equation to get:  

    

B = Bv + Bs = avA - avAƒ2 (1 – ƒ1)                          7. 15 

 

where      Bs = -avAƒ2(1 – ƒ1)           is the surface term 

    

 Now taking ƒ1 ≈ 2/3 and ƒ2 =Vs /Vt = 3/A
⅓
, where             

Vs =4πR
2
(1.07) = 4π(1.07)

3
A

⅔
  is the shell volume of 

thickness 1.07 fm, then: 

 

-Bs = asA
⅔
                                                                7.16 

 

where as =16.8 MeV 
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Fig. 7.2 is a Pictorial representation of nuclear surface 

effects on binding energy. Nucleons at or near to the nuclear 

surface are less strongly bound than a nucleon within the 

nuclear interior. 

    

 
Figure 7.2. A Pictorial representation of a liquid drop. 

 

7.3.3. Coulomb term 
    

Coulomb effects result since a charge of Ze is present 

within the nuclear volume, which make it a negative term. 

For a homogeneously charged liquid drop with sharp 

radius R and density ρc: 

                           

3

3

4
R

Ze
c



                                                         7.17  

 

One can evaluate the Coulomb contribution to the 

nuclear binding energy by a classical argument. Fig. 7.3 (a) 

shows the Coulomb energy evaluated by calculating the 

energy needed to constitute the full nuclear charge in terms 

of spherical shells dr filled in one after the other. While   

Fig. 7.3(b) shows the electrostatic potential energy, 

calculation is reduced to the Coulomb energy between a 
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central charge, cr  3

3

4
 and the charge in an infinitesimal 

shell cdrr  24 . 

 Therefor, the Coulomb energy needed (work required) to 

add a spherical shell to the outside of the sphere with radius 

r to give an increment dr becomes:  
 


R cc

o
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23 4
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                          7.18 

 

Using the above charge density, the integral becomes: 
 

 

                                                                                          7.19  

  

 

 
 

Figure 7.3. Evaluation of the Coulomb energy of a liquid, 

spherical charged drop.  

 

In the argument used above, we have smoothed out the 

charge of Z nucleons over the whole nucleus. In this 
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evaluation, we have counted a self-energy Coulomb 

interaction which is spurious and we should correct for the 

effect of Z protons. Using the same method as before, but 

now with the proton smeared charge density: 
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and self-coulomb energy, for the Z protons, as: 

 

0

2
//

4

1

5

3

R

Ze
U c                                                 7.21 

 

The total coulomb energy correction becomes:  

                                                                                                                                                                                                                  

                                                                                          7.22                                                                                                          
 

 

and in terms of binding energy Bc, mass number A, and 

atomic number Z, 
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 AZZaB cc                                                7.23 

where
0

2

4

1

5

3

R

e
ac  = 0.72 MeV        

 

7.3.4. Symmetry term 
 

It is the increase in energy required by nucleus to have 

unequal numbers of protons (Z) and neutrons (N). This term 

is purely quantum mechanical in origin and a shell model 

correction due to Pauli principle.  
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In the absence of the Coulomb force, the binding energy 

of a nucleus of mass number A is minimum when Z = N 

compared with isobar of different N and Z, i.e., N > Z , then 

binding energy due to symmetry is negative  -Bsy. This term 

is important in light stable nuclei for which Z ≈ A/2. The 

binding energy of these nuclei will be maxima when 

nucleons occupy the lowest possible orbital. The Pauli 

principle (in a closed system no two identical particles can 

be in the same energy state), however, prevents the 

occupation of a certain orbital by more than two identical 

nucleons with opposite intrinsic spin orientations. The 

symmetric distribution Z = N = A/2 proves to be the 

energetically most favored (if only this term is considered!). 

 Any other repartition, N = (A/2) + υ, Z = (A/2) - υ, will 

involve lifting particles from occupied into empty orbital. If 

the average energy separation between adjacent orbital 

amounts to be Δ, replacing υ nucleons will cost an energy 

loss of, see Fig. 7.4: 

                 

Δ(BE) = υ(Δυ/2)                                                      7.24                             

 

and with υ = ( N - Z)/2, this becomes: 

 

Bsy = (1/8)(N - Z)
2
Δ 

 

              = (A – 2Z)
2 
Δ/8                                                   7.25 

 

The potential depth VO, describing the nuclear well does 

not vary much with changing mean number; for the two 

extremes 
I6

O and 
208

Pb, the depth does not change by more 

than 10%  and thus, the average energy spacing between the 

single particles, Δ, should vary inversely with A, i.e. Δ α A
-1

. 
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The final result, expressing the loss of symmetry energy 

due to the Pauli effect which blocks the occupation of those 

levels that already contain two identical nucleons, becomes: 

                           

Bsy = asy (A – 2Z)
2 
A

-1
                                              7.26 

 

where asy = 23.3 MeV  

   

 
Figure 7.4. Schematic single-particle model description, two 

different distributions of A nucleons over the proton and 

neutron orbital with two-fold (spin) degeneracy. 

 

7.3.5. Pairing term 

 
The pairing is the tendency of like nucleons to couple 

pair wise (proton pair, neutron pair) to a stable configuration 

in the nucleus under the influence of the short-range 

nucleon-nucleon attractive force. This effect is best 

illustrated by studying nucleon separation energies. We can 

define each of the various separation energies as the energy 

needed to take a particle out of the nucleus and so this 
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separation energy becomes equal to the energy with which a 

particular particle (or cluster) is bound in the nucleus. 

For a proton and a neutron, the separation energy 

becomes:   

     

Sp= B (A, Z) - B (A - 1, Z - 1)                                             7.27 

 

Sn = B (A, Z) - B (A - 1, Z)                                               7.28 

 

The separation energy for α-particle reads: 

 

Sα = B (A, Z) - (B (A-4, Z - 2) + B (4, 2))                             7.29  

 

In mapping Sp and Sn values, a specific saw-tooth figure 

results from Sn values. This figure very clearly expresses the 

fact that it costs more energy (on average 1.2-1.5 MeV) to 

separate a neutron from a nucleus with even neutron number 

than for the adjacent odd-neutron number nuclei. The above 

point proves an odd-even effect, showing that even-even 

nuclei are more bound than odd-even nuclei by an amount 

which we call δ. Proceeding to an odd-odd nucleus, we have 

to break a pair, relative to the odd-even case and lose an 

amount δ of binding energy. Taking the odd-even nucleus as 

a reference point, we can then express the extra pairing 

energy correction Bp as: 

 

Bp = +δ    if Z even, N even 

Bp =   0    if Z even, N odd; or Z odd, N even      

Bp = - δ     if Z   odd, N odd                                     7.30 

 

The exact form of δ used as found by fitting the data is: 

  

δ = ap A
-3/4

       where ap =34 MeV                          7.31 
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7.3.6. SEMF terms collection  
 

Combining all of the above derived results of the binding 

energy terms, we obtain a semi-empirical mass formula 

SEMF: 

B (A, Z) = Bv + Bs + Bc + Bsy + Bp 

 

B (A, Z) = avA - as A
2/3

 - ac Z(Z - 1)A
-1/3 

 

- asy(A - 2Z)
2
A

-1
 + Bp                            7.32 

 

Accordingly the binding energy per nucleon B /A is: 

 

B /A = av - as A
-1/3

 - ac Z(Z - 1)A
-4/3

 

 

- asy(A - 2Z)
2
A

-2
 + BpA

-1
                                 7.33 

 

This is known as the Bethe-Weizsäcker mass equation 

and the behavior of various terms contribution to the B/A is 

given in Fig. 7.5. It should be noted from Fig. 7.5 that the 

surface, asymmetry and Coulomb terms have been plotted so 

that they subtract from the volume term to give the total 

SEMF result in the lowest curve. 

 A simple way to interpret Eq. 7.32 is to regard the first 

term as a first approximation to the binding energy. That is 

to say, the binding energy is proportional to the volume of 

the nucleus or the mass number A. This assumes every 

nucleon is like every other nucleon. Of course, this is an 

oversimplification and the remaining terms can be regarded 

as corrections to this first approximation. 

The contribution of the pairing energy (the last term) for 

the same A may be different for different combinations of   

Z, N, though it generally decreases with increasing A. The 
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contribution of the volume energy, which is proportional to 

A, is a constant. The surface energy makes a negative 

contribution whose absolute value gives the largest 

correction for smallest A and decreases with increasing A. 

The Coulomb energy also makes a negative contribution 

whose absolute value increases with A as Z and A increase 

together. The two terms taken together produce a maximum 

in the B /A curve, already very close to the region of most 

strongly bound (per nucleon) nuclei.  The symmetry energy 

makes a negative contribution too, its absolute value 

increasing with A because Z/A decreases when A increases. 

Adding together these terms, we see that the mean binding 

energy increases with A at first, reaching a flat maximum at 

A ~ 50 and then decreases gradually, as shown in Fig. 7.5. 

Using fits of known masses to SEMF, one can determine 

the five coefficients; a fit by Wabstra-1971 gives the 

following values in units of MeV/c
2
: 

  

av = 15.6;  as = 16.8;  ac = 0.72;   

 

asy = 23.3;  ap = 34                                                    7.34 

 

Since the fitting to experimental data is not perfect, one 

can find several slightly different coefficients in the 

literature.  

The average accuracy of Eq. 7.32 is about 2 Mev except 

where strong shell effects are present. One can add a term,   

~ 1 to 2 Mev, to Eq. 7.32 to represent the shell effects, extra 

binding for nuclei with closed shells of neutrons or protons. 
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Figure 7.5. Contributions to the B/A as a function of mass 

number A from various term in the SEMF.  

 

7-3-7. Shell term correction 
 

The Liquid Drop Model (LDM) describes the bulk 

properties of nuclei with the above five terms. However, 

although this empirical model can reproduce the average 

properties of most nuclei, there are significant deviations 

from this near closed shells, specifically those nuclei 

corresponding magic numbers:  p and/or N = 2, 8, 20, 28, 

50, 82, and 126, where the LDM underestimates the binding 

energy. It is, therefore, necessary to include the shell 

correction that accounts for the differences of more than 10 

MeV of the ground-state masses. Qualitatively, this is 

because the nucleons are occupying “deeper” orbitals. The 

shell effects can, therefore, be thought of as arising from 

fluctuations in the level density around the Fermi surface. 
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The method for incorporating these effects is called the 

Strutinsky shell correction (or renormalisation approach). 

By expressing the nuclear binding energy Btot as the sum 

of a liquid drop model part BLD (Eq. 7.32) and a shell 

correction term Bsh = ηsh: 

 

Btot = BLD + ηsh                                                       7.35 

 

ηsh in Eq.7.35 consists of  proton ηZ and neutron ηN shell 

terms which represent the mutual support of magic number. 

 

     ( )   ( )                                                  7.36 

       ( )  .
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       ( )  .
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where   
        

  are adjustable parameters. 

 

So ηsh derived from the shell model energy with a 

smooth part subtracted averages to zero over the range of 

atomic mass number but not the magic numbers. The extra 

binding energy per nucleon due to shell term for magic 

numbers of N and Z is about 1 – 2 MeV more binding. 

In addition to what we have already mentioned, one can 

consider another term representing nuclear deformation. 

 

7.4. Shell Model  
 

7.4.1. Introduction 
  

There are similarities between the electronic structure of 

atoms and nuclear structure. Atomic electrons are arranged 

in orbits (energy states) subject to the laws of quantum 

mechanics. The distribution of electrons in these states 
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follows the Pauli Exclusion Principle. Atomic electrons can 

be excited up to normally unoccupied states or they can be 

removed completely from the atom. From such phenomena, 

one can deduce the structure of atoms. In nuclei, there are 

two groups of like particles, protons and neutrons. Each 

group is separately distributed over certain energy states 

subject to the Pauli Exclusion Principle. Nuclei have excited 

states and nucleons can be added to or removed from a 

nucleus.  

Electrons and nucleons have intrinsic angular momentum 

called intrinsic spins. The total angular momentum of a 

system of interacting particles reflects the details of the 

forces between particles. For example, from the coupling of 

electron angular momentum in atoms we infer an interaction 

between the spin and the orbital motion of an electron in the 

field of the nucleus (the spin-orbit coupling). In nuclei, there 

is also a coupling between the orbital motion of a nucleon 

and its intrinsic spin (but of different origin). In addition, 

nuclear forces between two nucleons depend strongly on the 

relative orientation of their spins.  

The structure of nuclei is more complex than that of 

atoms. In an atom the nucleus provides a common center of 

attraction for all the electrons and inter-electronic forces 

generally play a small role. The predominant force 

(Coulomb) is well understood. Nuclei, on the other hand, 

have no center of attraction; the nucleons are held together 

by their mutual interactions which are much more 

complicated than Coulomb interactions.  

All atomic electrons are alike, whereas there are two 

kinds of nucleons. This allows a richer variety of structures. 

Notice that there are ~ 100 types of atoms, but more than 

1000 different nuclides. Neither atomic nor nuclear 

structures can be understood without quantum mechanics. 
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7.4.1.1. Experimental basis  
 

It is to be expected that the ideas and concepts that 

proved so effective in determining the electronic structure of 

atoms should be carried over into nuclear physics, closed 

shells structure is one of these ideas because of the stability 

of the system with the given number of particles, depending 

on different experimental evidences. One of these evidences 

is the isotopes abundance, the elements of high isotopic 

abundance, particularly those with Z > 33, for example, 
88

Sr 

with N=50 and 
140

Ce with N=82 have abundance greater 

than 60%. 

Another evidence is the number of stable isotopes of a 

given element; for example, tin 50Sn of Z=50 and lead 82Pb 

of Z=82, have 10 and 4 stable isotopes, respectively, also 

there are 7 stable isotones of nuclides with N=82, these are 
136

Xe, 
138

Ba, 
139

La, 
140

Ce, 
141

Pr, 
142

Nd, and 
144

Sm.   

Fig. 7.6 shows that the abundance of stable isotones 

(same number of neutrons) is particularly large for nuclei 

with magic neutron numbers. Specifically, the nuclides with 

neutron numbers 20, 28, 50 and 82 are more abundant by     

5 to 7 times than those with non-magic neutron numbers. 

Other evidence for the existence of a closed shells at    

N=50, 82 and 126 may be obtained from some fission 

products called the delayed neutron emitters, such as 
87

Kr of 

N=51 and 
137

Xe of N=83, in which the last neutron has very 

small binding energy and can rapidly be emitted to form 
86

Kr of N=50 and 
136

Xe of N=82, respectively. 
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Figure 7.6. Histogram of stable isotones showing number of 

magic nuclides.  

 

The first excited states of even-even nuclei have higher 

excitation energy than usual energies at the magic numbers, 

indicating that the magic nuclei are more tightly bound. 

 

Also nuclei of N=50, 82 and 126 have very small 

neutrons absorption cross-section, indicating a wider 

spacing of the energy levels just beyond a closed shell, as 

shown in Fig. 7.7. 
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Figure 7.7. First excited state energies of even-even nuclei. 

 

 
Figure 7.8. Cross sections for capture at 1 MeV. 
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Also the measured proton and neutron separation 

energies as compared to the predicted values by the semi-

empirical mass formula, as discussed before, show that the 

separation energy increases gradually with N or Z except for 

a few sharp drops that occur at the same neutron and proton 

even numbers. This led to guess that the sharp 

discontinuities in the separation energy correspond (as in the 

atomic case) to the filling of major shells.    

Fig. 7.9 shows that the neutron separation energy Sn is 

particularly low for nuclei with one more neutron than the 

magic numbers, which are more tightly bound. 

The nuclear shell model is limited in its application to the 

ground states and low-lying excited states of nuclei. The 

present experimental evidence shows that there are closed 

nuclear shells at neutron and proton numbers 2, 8, 20, 28, 

50, 82 and neutron number 126, which are called magic 

numbers.  

The problem then is to determine the order in which 

these shells are filled as nucleons are added to make heavier 

nuclei. Quantum mechanical calculation has been made to 

determine a complete shell structure and the order of filling 

such shells. The model can account for many crucial nuclear 

properties as well, and we will, therefore, review several 

quantum behavior of atomic structure (the detailed 

information as connected to the nuclear structure is given in 

the previous section) before discussing the model and its 

application to the nuclear domain.  
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Figure 7.9. Variation of neutron separation energy with 

neutron number of the final nucleus M(A,Z). 

 

7.4.1.2. Quantum behavior of atomic structure 
 

As we know, the binding of electrons to a nucleus in a 

complex atom is attributed to the central Coulomb potential. 

Electron orbits and energy levels for such a quantum system 

can be obtained by solving the appropriate Schrödinger 

equation. In general, the solutions are quite complicated 

because they involve the Coulomb field of the nucleus as 

well as that of the other electrons, and cannot be obtained in 

closed analytic form. Nevertheless, certain characteristic 

features of the motion of an electron in a hydrogen atom 

have general relevance, which will be first discussed.  

The orbits and atomic energy levels that electrons can 

occupy are labeled by a principal quantum number n (this 

determines the eigenvalue of the energy in the case of 

hydrogen), which can assume only integral values: 
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n = 1, 2, 3 ……                                                        7.37 

       

For any given value of the principal quantum number, 

there are energy-degenerate levels with orbital angular 

momentum quantum number given by: 

 

ℓ = 0, 1, 2… (n - 1)                                                  7.38          

 

(This restriction follows from the form of the Coulomb 

potential). For any value of ℓ, there are (2ℓ + 1) sub-states 

with different values of the projection of orbital angular 

momentum along any chosen axis (the magnetic quantum 

number):  

 

mℓ = - ℓ, - ℓ + 1… 0, 1… ℓ - 1, ℓ                             7.39 

 

Due to the rotational symmetry of the Coulomb potential, 

all such sub-states are degenerate in energy. Furthermore, 

since electrons have an intrinsic spin angular momentum of   

ћ/2, each of the above states can be occupied by an electron 

with spin "up" or "down", corresponding to the spin-

projection quantum number: 

                    

ms = ± 1/2                                                                 7.40 

 

Again, the energy corresponding to either of these spin 

configurations will be the same. 

Thus, any energy eigenstate in a hydrogen atom is 

labeled by four quantum numbers, namely (n, ℓ, mℓ, ms). For 

a given value of n, it follows that the number of such 

degenerate energy states ndg is given by: 
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However, all of these states are degenerate only if there is 

no preferred direction in space that can break the rotational 

symmetry of the Coulomb interaction. The high degree of 

degeneracy can be broken if there is a preferred direction in 

space, such as that supplied by a magnetic field; the energy 

of the system can also depend on the mℓ and ms quantum 

numbers. In particular, spin-orbit interactions in atoms lead 

to a fine structure in the energy levels that has been well-

studied. 

 Because the effects of such interactions are usually quite 

small, they are often neglected in elementary discussions of 

atomic physics; however, as we shall see, they provide a key 

element in determining the nature of nuclear structure.  

The degeneracy in mℓ and ms is not affected greatly, even 

in more complex atoms. Any shell can still accommodate 

only 2n
2
 electrons, in consistency with the Pauli principle. It 

also follows that if a shell or a sub-shell is filled, we have: 

 

∑ mℓ =0                                                                    7.42 

 

∑ ms = 0                                                                   7.43 
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In other words, there is a strong pairing effect for closed 

shells and from the antisymmetric of the fermionic wave 

function, it can be shown that we get in general: 

 

L = S = 0,                                                                 7.44 

 

J = L + S = 0.                                                           7.45 

 

For any atom containing a closed shell or a closed sub-

shell, all electrons are paired off and consequently no 

valence electrons are available. As a result, such atoms will 

be chemically inert. In fact, if we examine the inert 

elements, we find that they have just such structure with 

ground state configuration.  

For example, both electrons in the He (Z =2) atom fill up 

the shell corresponding to n = 1, 1s
2
. Similarly, Ne (Z=10) 

has closed shells corresponding to n=1 and n= 2, 1s
2
 2s

2
 2p

6
. 

Ar (Z=18) has closed shells corresponding to n=1, 2, and 

closed sub-shells corresponding to n =3, ℓ=0, l, [Ne] 3s
2
 3p

6
. 

Kr (Z=36) fill up shells corresponding to n=1, 2, 3, as well 

as the sub-shells corresponding to n=4,   ℓ=0, 1, [Ar] 3d
10

 

4s
2
 4p

6
. Finally, Xe (Z=54) has closed shells corresponding 

to n=1, 2, 3, and closed sub-shells corresponding to n=4,      

ℓ = 0, 1, 2, as well as n=5, ℓ=0, 1. (The energies of the 

oblong n = 4, ℓ=3 levels lie above the more spherical n=5, 

ℓ= 0, 1 levels; the latter, therefore, get filled first),            

[Kr] 4d
10

 5s
2
 5p

6
. 

These inert elements are exceedingly stable. In fact, their 

ionization energies are particularly large, as is consistent 

with their greater stability. The above atomic numbers, 

namely, Z = 2, 10, 18, 36, 54, are called the magic numbers 

of atomic physics and correspond to closed shell structures. 
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7.4.2. Nuclear shell model potential 
 

A simple Coulomb potential is clearly not appropriate 

for nuclear structure as we need some form that describes 

the effective potential of all the other nucleons. Since the 

strong nuclear force is short-ranged, we would expect the 

potential to follow the form of the density distribution of 

nucleons in the nucleus. Although, it cannot be attractive for 

all separations or, otherwise, nuclei would collapse in on 

them. So at very short ranges, there must be a repulsive core. 

However, the repulsive core can be ignored in low-energy 

nuclear structure problems because low-energy particles 

cannot probe the short-distance behavior of the potential. In 

lowest order, the potential may be represented dominantly 

by a central term (i.e. one that is a function only of the radial 

separation of the particles), although there is also a smaller 

non-central part. We know from proton–proton scattering 

experiments that the nucleon–nucleon force is short-range, 

of the same order as the size of the nucleus, and thus does 

not correspond to the exchange of gluons, as in the 

fundamental strong interaction.  

A schematic diagram of the resulting potential is shown 

in Fig. 7.10. In this figure, the distance R is the range of the 

nuclear force and δ << R is the distance at which the short-

range repulsion becomes important and the depth                

V0 ≈ 40 - 50 MeV.  In practice, of course, this strong 

interaction potential must be combined with the Coulomb 

potential in the case of protons. 

A comparison of n-n and p-p scattering data (after 

allowing for the Coulomb interaction) shows that the nuclear 

force is charge-symmetric (p-p = n-n) and almost charge-

independent (p-p = n-n = p-n), and evidence for charge-
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independence comes from the energy levels of triplets of 

related nuclei with the same A values. 

 

 

 
 

Figure 7.10. Idealized square well representation of the 

strong interaction nucleon-nucleon potential. 

 

Nucleon–nucleon forces are, however, spin-dependent. 

The force between a proton and neutron in an overall spin-1 

state (i.e. with spins parallel) is strong enough to support a 

weakly bound state (the deuteron), whereas the potential 

corresponding to the spin-0 state (i.e., spins antiparallel) has 

no bound states. Finally, nuclear forces saturate, this 

describes the fact that a nucleon in typical nucleus 

experiences attractive interactions only with a limited 

number of the many other nucleons and is a consequence of 

the short-range nature of the force. The evidence for this is 

the form of the nuclear binding energy curve and was 

discussed in Chapter 2. 
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7.4.2.1. Simple shell model 
 

As a first step in improving the model, we try to choose a 

more realistic potential. The basic assumption of the shell 

model is that the effects of inter-nuclear interactions can be 

represented by a single-particle potential. One might think 

that with very high density and strong forces, the nucleons 

would be colliding all the time and therefore cannot 

maintain a single-particle orbit. But, because of Pauli 

exclusion the nucleons are restricted to only a limited 

number of allowed orbits. A typical shell-model potential is:  

     

V (r) = − V0 / {1+ exp [(r − R)/ a]}                          7.46 

  

This is sketched in Fig. 7.11. The parameters R and a 

give, respectively, the mean radius and skin thickness of the 

nucleus, where typical values for the parameters are           

V0 ≈ 57 MeV,  R ≈ 1.25A
1/3 

fm, a ≈ 0.65 fm. In addition, one 

can consider corrections to the well depth arising from, first 

symmetry energy from an unequal number of neutrons and 

protons, with a neutron being able to interact with a proton 

in more ways than n-n or p-p (therefore n-p force is stronger 

than n-n and p-p), and second Coulomb repulsion.  

For a given spherically symmetric potential V(r), one can 

examine the bound-state energy levels that can be calculated 

from Schrödinger equation for a central potential V(r), 

starting from the general form: 

 

 
  

  
   ( )   ( ) ( )    ( )                      7.47 

 

where E is the energy eigenvalue.  
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Figure 7.11. A realistic form of the shell model potential. 

 

Because we assume that the potential is spherically 

symmetric, the energy eigenstates will also be eigenstates of 

the angular momentum operator. In other words, the system 

has rotational invariance which gives rise to its angular 

momentum to be conserved. 

When we search for separable solutions, of the form 

Ψ(r,θ,θ) = R(r) Θ(θ) Φ(θ), the central potential V(r) in      

Eq. 7.47 appears only in the radial part of the separation 

equation and the angular parts can be solved directly. The 

differential equation for Φ(θ) is:   
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where 
2

m is the separation constant, and:  

             

mℓ = 0, ±1, ±2……±ℓ                                              7.49 

  

and the differential equation for Θ(θ) is: 
 

0
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where ℓ = 0, 1, 2, 3 ….. and mℓ = 0, ±1, ±2…±ℓ. The 

solution Θℓmℓ (θ) can be expressed as a polynomial of degree 

ℓ in sinθ or cosθ. Together, and normalized, Φmℓ(θ) and  

Θℓmℓ (θ) give the spherical harmonics Yℓmℓ (θ, θ).  

As a result, the radial wave equation for a particular 

orbital angular momentum ℓ can be written:  

  

ERRrV
mrdr

dR

rdr

Rd

m





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2

2

22 
      7.51 

 

where the term ℓ (ℓ + 1) is generally written as an addition 

to the potential, called "centrifugal potential" and it acts like 

a potential that keeps the particle away from the origin  

when ℓ >0. 

Fig. 7.12 shows the energy levels of the nucleons for an 

infinite spherical well and a harmonic oscillator potential,  

V (r) = mω
2
r 

2
 / 2. In the spectroscopic notation (n, ℓ), n 

refers to the number of times the orbital angular momentum 

state ℓ has appeared. Also in Fig. 7.12, one can see at certain 

levels the cumulative numbers of nucleons that can be put 

into all the levels up to the indicated level. 

 While no simple formulas can be given for the former, 

for the latter one has the expression: 

         

En= ħω (ν+ 3/2) = ħω (nx + ny + nz + 3/ 2)               7.52 

 

where ν = 0, 1, 2… and nx, ny, nz = 0, 1, 2 … are quantum 

numbers. One should notice the degeneracy in the oscillator 

energy levels. The quantum number ν can be divided into 

radial quantum number n (1, 2, 3 …) and orbital quantum 

numbers ℓ (0, 1, 3 …) as shown in Fig. 7.12. One can see 

from these results that a central force potential is able to 
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account for the first three magic numbers, 2, 8, 20, but not 

the remaining four, 28, 50, 82, 126. This situation does not 

change when more rounded potential forms are used. The 

implication is that something very fundamental about the 

single-particle interaction picture is missing in the 

description. 

 

Figure 7.12. Energy levels of nucleons (a) in an infinite 

spherical well (range R = 8fm) and (b) in a parabolic 

potential well.  

 

7.4.2.2. Shell model with spin-orbit coupling  
 

It remains for M. G. Mayer and independently Haxel, 

Jensen, and Suess to show (1949) that an essential missing 

piece is an attractive interaction between the orbital angular 
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momentum and the intrinsic spin angular momentum of the 

nucleon. To take into account this interaction, we add a term 

to the Hamiltonian H:  

 

Vtot = V(r) + Vso(r) S.L                                            7.53 

 

where Vso is another central potential (known to be 

attractive).  

This modification means that the interaction is no longer 

spherically symmetric; the potential now depends on the 

relative orientation of the spin and orbital angular moments. 

In order to understand the meaning of the results of such 

calculations (eigenvalues and eigenfunctions), we need to 

digress somewhat to discuss the addition of two angular 

momentum operators.  

The presence of the spin-orbit coupling term in Eq.7.53 

means that we will have a different set of eigenfunctions and 

eigenvalues for the new description. What are these new 

quantities relative to the eigenfunctions and eigenvalues we 

had for the problem without the spin-orbit coupling 

interaction? We first observe that in labeling the energy 

levels in Fig. 7.12 we had already taken into account the fact 

that the nucleon has an orbital angular momentum (it is in a 

state with a specified ℓ ) and that it has an intrinsic spin of ½ 

(in unit of ħ ). For this reason, the number of nucleons that 

we can put into each level has been counted correctly. For 

example, in the 1s ground state, one can put two nucleons, 

for zero orbital angular momentum and two spin orientations 

(up and down). The number of nucleons that can go into that 

state is 2(2ℓ +1). The two angular moments we want to add 

are obviously the orbital angular momentum operator L and 

the intrinsic spin angular momentum operator S, since they 

are the only angular momentum operators in our problem.  
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Notice that if we define the total angular momentum as:  

           

j =S + L                                                                    7.54 

 

we can then write the expectation values as: 

  

J.J =(S + L). (S + L)  

< S.L> = < (j 
2 

− S 
2 

− L
2

)/2>                                   7.55 

 

So the problem of diagonalizing the formula Eq. 7.51 is the 

same as diagonalizing j
2
, S

2
, and L

2
. This is then the basis 

for choosing our representation, denote the new 

eigenfunctions by | jm
j 

ℓs>, which has the following 

properties:    
   

j 
2

|jm 
j 
ℓs > = j( j +1)ħ

2 

|jm 
j 
ℓs>, |ℓ−s| ≤ j ≤ ℓ+s      7.56 

 

j
z 
|jm 

j 
ℓs>  = m

j 
ħ |jm 

j 
ℓs>,             −j ≤ m

j 
≤ j         7.57 

  

L
2 

|jm 
j 
ℓs>  = ℓ(ℓ +1)ħ

2 

|jm 
j 
ℓs>,  ℓ= 0, 1, 2, …     7.58 

 

S 
2

|jm 
j 
ℓs > = s(s +1)ħ

2 

|jm 
j 
ℓs>,    s = ½                7.59 

 

In Eq.7.56, we indicate the values that j can take for given ℓ 

and s (=1/2 in our discussion), the lower or upper limit 

corresponds to when S and L are antiparallel or parallel 

respectively, as shown in the sketch Fig. 7.13.a. 

The expectation values of Eq. 7.55 can be written as: 
 

      
 

 
, (   )   (   )   (   )-     7.60 
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To illustrate the degeneracy of each level, consider a 

level such as 1f (ℓ=3) level, which has a degeneracy of 

2(2ℓ+1) = 14. The possible j values are ℓ ± 1/2 = 5/2 or 7/2. 

Thus we have the levels 1f5/2 and 1f7/2. The degeneracy of 

each level is (2j + 1), which comes from mj values. The 

capacity of 1f5/2 level is 6 and of 1f7/2 is 8. For the 1f5/2 and 

1f7/2 states, which are known as a spin-orbit pair or doublet, 

there is an energy separation that is proportional to the value 

of <S.L> for each state. Indeed, for any pair of states with 

ℓ>0, we can compute the energy difference using Eq. 7.60: 

 

                      
 

 
(    )       7.61 

 

Returning now to the energy levels of the nucleons in the 

shell model with spin-orbit coupling we can understand the 

conventional spectroscopic notation where the value of j is 

shown as a subscript, Fig. 7.13.b.  

 

 

            

 

 

 

 

 

 

 

Figure 7.13. Sketch of,  

              a- vector relationship between S, L and J, 

b- The conventional spectroscopic notation. 
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This is then the notation in which the shell-model energy 

levels are displayed in Fig. 7.14. 

For a given (n, ℓ, j) level, the nucleon occupation number 

is 2j+1. It would appear that having (2j+1) identical 

nucleons occupying the same level would violate the Pauli 

Exclusion Principle. But, this is not the case since each 

nucleon would have a distinct value of mj (this is why there 

are 2j+1 values of mj for a given j).  

 
Figure 7.14. Energy levels of nucleons in a smoothly 

varying potential well with a strong spin-orbit 

coupling term. 
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We see in Fig. 7.14 that the shell model with spin-orbit 

coupling gives a set of energy levels having breaks at the 

seven magic numbers. This is considered a major triumph of 

the model, for which Mayer and Jensen were awarded the 

Noble prize in physics. For our purpose, we will use the 

results of the shell model to predict the ground-state spin 

and parity of nuclei. Before going into this discussion, we 

should mention the following comments:  

1. The shell model is most useful when applied to closed-

shell or near closed-shell nuclei. 

2. Away from closed-shell nuclei, collective models taking 

into account the rotation and vibration of the nucleus are 

more appropriate. 

3. Simple versions of the shell model do not take into 

account pairing forces, the effects of which are to make 

two like-nucleons combine to give zero orbital angular 

momentum. 

4. Shell model does not treat distortion effects (deformed 

nuclei) due to the attraction between one or more outer 

nucleons and the closed-shell core. When the nuclear 

core is not spherical, it can exhibit “rotational” spectrum.  

 

7.4.3. Shell model predictions  
 

7.4.3.1. Ground-state spin and parity  
 

The shell model accounts for a wide variety of properties 

of complex nuclei: For example; the nuclear spin and parity. 

There are three general rules for using the shell model 

to predict the total angular momentum I (spin) and parity of 

a nucleus in the ground state. These do not always work, 

especially away from the major shell breaks.  
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1. Angular momentum of odd-A nuclei I is determined by 

the angular momentum of the last nucleon in the species 

(ℓ + s) (neutron or proton) that is odd (jp or jn). 

2. Even-even nuclei have zero ground-state spin, because 

the net angular momentum associated with even N and 

even Z is zero, and even parity. 

3. In odd-odd nuclei, the last neutron couples to the last 

proton with their intrinsic spins in parallel orientation, 

i.e., I=jp+jn.  Therefore, to determine the possible ground 

state spin, the above vectore coupling can be written as: 

  

|jp – jn| ≤ I ≤ jp + jn                                                   7.62               

 

To illustrate how these rules work, we consider an 

example for each case:  

1- Consider the odd-A nuclide 
9
Be

 

which has 4 protons and 

5 neutrons. With the last nucleon being the fifth neutron, 

we see in Fig. 7.14 that this nucleon goes into the state 

1p
3/2 

(ℓ =1, j=3/2). Thus we would predict the spin and 

parity of this nuclide to be 3/2
-
, i.e., the 4 neutrons should 

be completely paired off, while the 5 neutrons should fill 

the following shells:  

    (1s1/2)
2 
(1p3/2)

3 
 

2- For an even-even nuclide, we can take 
36

A, with 18 

protons and neutrons, or 
40

Ca, with 20 protons and 

neutrons. For both cases, we would predict spin and 

parity of 0
+
. Since both protons and neutrons should be 

completely paired off as:     

  (1s1/2)
2 
(1p3/2)

4 
(1p1/2)

2
 (1d5/2)

6
 (2s1/2)

2
 (1d3/2)

2
   for 

36
A 

       (1s1/2)
2 
(1p3/2)

4 
(1p1/2)

2
 (1d5/2)

6
 (2s1/2)

2
 (1d3/2)

4
    for 

40
Ca  
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3- For an odd-odd nuclide, we take 
38

Cl, which has 17 

protons and 21 neutrons. In Fig. 7.14, we see that the 17
th

 

proton goes into the state 1d
3/2 

(ℓ =2, j=3/2), while the 

21
st
 neutron goes into the state 1 f

7/2 
(ℓ =3, j=7/2), i.e., 

protons and neutrons fill, respectively, the following 

shells: 

 

        (1s1/2)
2 
(1p3/2)

4 
(1p1/2)

2
 (1d5/2)

6
 (2s1/2)

2
 (1d3/2)

1
 

    

        (1s1/2)
2 
(1p3/2)

4 
(1p1/2)

2
 (1d5/2)

6
 (2s1/2)

2
 (1d3/2)

4
 (1f7/2)

1
 

 

 From the ℓ and j values, we know that for the last proton 

the orbital and spin angular moments are pointing in 

opposite direction (because j = ℓ -1/2). For the last neutron, 

the two moments are pointing in the same direction (j = ℓ 

+1/2). Now the rule tells us that the two spin moments are 

parallel, therefore, the orbital angular momentum of the odd 

proton is pointing in the opposite direction from the orbital 

angular momentum of the odd neutron, with the latter in the 

same direction as the two spins. Adding up the four angular 

moments, we have +3+1/2+1/2-2 = 2. Thus, the total angular 

momentum (nuclear spin) is I = 2. One can come out to the 

same conclusion by introducing the total angular momentum 

of both last proton 3/2 and last neutron 7/2 as in Eq. 7.62. As 

|7/2 – 3/2| ≤ I ≤ 7/2 – 3/2 to get I = 2, 3, 4, 5. Again the most 

likely I = 2.  

What about the parity? The parity of the nuclide is the 

product of the two parities, one for the last proton and the 

other for the last neutron as π= (−1)
ℓp+ℓn

.  

Recall that the parity of a state is determined by the 

orbital angular momentum quantum number ℓ, π= (−1)
ℓ
. So 

with the proton in a state with ℓ = 2, its parity is even, while 

the neutron in a state with ℓ = 3 has odd parity. The parity of 
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the nucleus is therefore odd. Our prediction for 
38

Cl is then 

2
-
. The student can verify, using for example the Nuclide 

Chart, the foregoing predictions are in agreement with 

experiment. 

However, certain spin-parity assignments of the shell 

model do not agree with observation. For example, the 25 

neutrons in 
47

Ti would be expected to fill the levels as: 

 

      (1s1/2)
2 
(1p3/2)

4 
(1p1/2)

2
 (1d5/2)

6
 (2s1/2)

2
 (1d3/2)

4
 (1f7/2)

5 

 

Leading to a ground state spin-parity of (7/2)
-
, whereas 

the experimental value is (5/2)
-
. Such discrepancies can be 

remedied by slightly modifying the assumptions of the 

single-particle shell model to allow pairing between all 

"valence" nucleons, namely between any nucleons that 

occupy unfilled levels.  

 

7.4.3.2. Magic nuclei 
 

In fact, although the binding energy per nucleon varies 

smoothly on a broad scale, a close examination shows peaks 

corresponding to specific values of nucleon numbers: 

                  

N = 2, 8, 20, 28, 50, 82, 126 

Z = 2, 8, 20, 28, 50, 82                                            7.63 

 

Nuclei with either proton or neutron number 

corresponding to any of these magic values appear to be 

particularly stable and are referred to as magic nuclei. 

Nuclei where both the proton and the neutron numbers are 

magic (e.g., 
4
He,

 16
O, 

208
Pb) are known as doubly magic, and 

have even greater stability, as mentioned earlier with 

experimental evidences in the beginning of this section. 
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7.4.3.3. Nuclear magnetic moment μ 
 

The shell model can also be used to calculate magnetic 

moments of nuclei. As measurements show, the proton and 

the neutron have intrinsic dipole moments of 2.792847 μN 

and -1.910427 μN, respectively, where μN is nuclear 

magneton. Thus, we expect the intrinsic magnetic moment 

of any unpaired nucleon to contribute to the total magnetic 

moment of the nucleus. In addition, since protons are 

charged, the orbital motion of any unpaired proton can also 

contribute to the magnetic moment of the nucleus, while any 

unpaired neutron has zero orbital motion contribution, just 

intrinsic spin contribution.  

For the even–odd nuclei, we would expect all the paired 

nucleons to contribute zero net magnetic moment, for the 

same reason that they do not contribute to the nuclear spin.  

Predicting the nuclear magnetic moment is then a matter of 

finding the correct way to combine the orbital μℓ and spin μs 

components of magnetic moment of the single unpaired 

nucleon. As shown in section 2.9, we can write Eq. 2.29 in 

terms of the nuclear magnetic moment as:  

 

μ = gI I μN                                                                7.64 

 

where gI is the nuclear (gyromagnatic ratio) g-factor and I is 

the nuclear spin quantum number equal to the total angular 

quantum number of the last unpaired nucleon j. It is beyond 

the scope of this book to go deep in details, the simplified 

resultant formula are as follows:  

 

I gI = gℓ j + gs/2      for j = ℓ + 1/2                              7.65a 

and 
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I gI=gℓ j[1+1/(2ℓ+1)]–gs j[1/(2ℓ+1)]  for j=ℓ-1/2      7.65b 

  

Since the g-factor due to orbital angular momentum,      

gℓ = 1 for a proton and 0 for a neutron, while that due to spin 

gs = +5.585694 for the proton and = -3.826084 for the 

neutron. Eq. 7.65 yield the following results for the unpaired 

(odd) proton and neutron: 
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Accurate values of magnetic dipole moments are 

available for a wide range of nuclei and plots of a sample of 

measured values for a range of odd-Z and odd-N nuclei 

across the whole periodic table are shown in Fig. 7.15. It is 

seen that for a given j, the measured moments usually lie 

somewhere between the j = ℓ - 1/2 and the j = ℓ + 1/2 values 

(the so-called Schmidt lines), but beyond that the model 

does not predict the moments accurately. The only 

exceptions are a few low-A nuclei where the numbers of 

nucleons are close to magic values. 

For the deuteron, for example, if we assume that the 

proton and the neutron are in ls1/2 states, then, without orbital 

angular momentum for the proton (ℓ = 0), we expect the 

magnetic moment of the deuteron μd to be the sum of the 

intrinsic dipole moments of the proton and the neutron: 

 

μd = 2.792847 μN - 1.9130427 μN = 0.8854273 μN       7.67 
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The observed magnetic moment of the deuteron is      

0.86 μN, which is in fair agreement with expectation.  

The nucleus of tritium (
3
H) has two neutrons and one 

proton, all in the ls1/2 state. Since the neutrons are paired, 

they should not contribute to the magnetic moment. The 

unpaired proton, having ℓ=0, will have no contribution from 

its orbital motion. Consequently, the total magnetic moment 

of 
3
H should be the same as that of the unpaired proton, 

namely 2.792847 μN, which is in good agreement with 

measured value of 2.98 μN.  

For 
3
He, the unpaired nucleon is a neutron in an lS1/2 

state. Consequently, the total magnetic moment should be 

the same as that of the neutron, which is -1.91 μN. Again, 

close to the observed value of -2.13 μN, 
4
He (α-particle) has 

a closed shell structure (in fact, it is doubly magic) and the 

shell model would, therefore, predict no spin and no 

magnetic moment, which is indeed experimentally correct.  

In 
10

B, the five protons and the five neutrons have the 

same level structure, namely: 

      (1s1/2)
2 
(1p3/2)

3
 

Thus, there is one unpaired proton and one unpaired 

neutron. The unpaired proton will be in an ℓ = 1 state, and 

therefore the orbital motion will contribute μ= μN to the total 

magnetic moment, which will yield a value: 

 

μB =2.792847μN -1.9130427μN+μN=1.8542738 μN.   7.68 

  

This compares quite well with the measured value of 

1.80 μN.  

We see, therefore, that the shell model, in addition to 

providing the known magic numbers, also describes other 

important properties of light nuclei. For heavy nuclei, 
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however, there is marked difference between the predictions 

of the shell model and the measured quantities. 

 

 
Figure 7.15. Magnetic moments for odd-N, even-Z nuclei 

(left diagram) and odd-Z, even-N (right diagram) as 

functions of nuclear spin compared with the predictions of 

the single-particle shell model (the Schmidt lines). 

 

7.4.3.4. Symmetry and Coulomb interactions 

correction 
  

The qualitative features of the potential wells for 

neutrons and protons can be summarized by following: If we 

exclude the Coulomb interaction for the moment, the well 

for a proton is known to be deeper than that for a neutron. 

The reason is that in a given nucleus there are usually more 

neutrons than protons, especially for the heavy nuclei, and 

the n-p interactions can occur in more ways than either the 

n-n or   p-p interactions on account of the Pauli exclusion 

principle. The difference in well depth ∆V
sy is called the 
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symmetry energy; as has been described in liquid drop 

model, it is approximately given by:  

 

 ∆V
sy 

=±27 (N – Z)/A MeV                                     7.69 

 

where the (+) and (–) signs are for protons and neutrons, 

respectively. If we now consider the Coulomb repulsion 

between protons, its effect is to raise the potential for a 

proton. In other words, the Coulomb effect is a positive 

contribution to the nuclear potential which is larger at the 

center than at the surface and extends beyond it; this 

potential can be estimated as follows: 

If all positive charge Ze is concentrated at the center of 

the nucleus of a sharp edge at r =R0, the electric field E(r) is: 
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This potential is, therefore, half times larger at the center       

(r < R0) of the nucleus than that at the edge (r > R0).  
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Combining the symmetry and the Coulomb effects, we 

have a sketch of the potential for a neutron and a proton as 

indicated in Fig. 7.16. One can also estimate the well depth 

in each case using the Fermi Gas Model. One assumes that 

the nucleons of a fixed kind behave like a fully degenerate 

gas of fermions (degeneracy here means that the states are 

filled continuously starting from the lowest energy state and 

there are no unoccupied states below the occupied ones), so 

that the number of states occupied is equal to the number of 

nucleons in the particular nucleus. 

 
Figure 7.16. Schematic diagram showing the effects of 

symmetry and Coulomb interactions on the potential for a 

neutron and a proton. 

 

This calculation is carried out separately for neutrons and 

protons. The highest energy state that is occupied is called 

the Fermi level, and the magnitude of the difference between 

this state and the ground state is called the Fermi energy EF. 
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It turns out that EF is proportional to n
2/3

, where n is the 

number of nucleons of a given kind, therefore,                     

EF (neutron) > EF (proton). The sum of EF and the separation 

energy of the last nucleon provide an estimate of the well 

depth (The separation energy for a neutron or proton is 

about 8 MeV for many nuclei). Based on these 

considerations, Fig. 7.17 shows the nuclear potential wells 

for neutrons and protons according to the Fermi-Gas Model, 

with the mean binding energy per nucleon to be 8 MeV, the 

mean relative nucleon admixture to be N/A ~ 1/1.8,         

Z/A ~ 1/2.2, and a range of 1.4 fm(a) and 1.1 fm(b). 

 

 
Figure 7.17. Nuclear potential wells for neutrons and 

protons according to the Fermi-Gas Model. 

 

7.4.3.5. Excited states 
 

In principle, the shell model‟s energy level structure can 

be used to predict nuclear excited states. This works quite 

well for the first one or two excited states when there is only 
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one possible configuration of the nucleus. However, for 

higher states the spectrum becomes very complicated 

because several nucleons can be excited simultaneously into 

a superposition of many different configurations to produce 

a given nuclear spin and parity. When trying to predict the 

first one or two excited states using a filling diagram like 

Fig. 7.14, we are looking for the configuration that is nearest 

to the ground state configuration. This will normally involve 

either moving an unpaired nucleon to the next highest level, 

or moving a nucleon from the sub-shell below the unpaired 

nucleon up one level to pair with it. Thus it is necessary to 

consider levels just above and below the last nucleons 

(protons and neutrons).  

As an example, consider the case of 
17

O. Its ground-state 

configuration is: 

 

 (1s1/2)
2 
(1p3/2)

4 
(1p1/2)

2
            for the protons 

 

 (1s1/2)
2 
(1p3/2)

4 
(1p1/2)

2
 (1d5/2)

1
 for the neutrons 

 

 All the proton sub-shells are filled, and all the neutrons 

are in filled sub-shells except for the last one, which is in a 

sub-shell on its own. There are three possibilities to consider 

for the first excited state:  

1. Promote one of the 1p1/2 protons to1d5/2, giving a 

configuration of (1p1/2)
-1

(1d5/2)
1
, where the superscript -1 

means that the shell is one particle short of being filled; 

2. Promote one of the 1p1/2 neutrons to 1d5/2, giving a 

configuration of (1p1/2)
-1

(1d5/2)
2
; 

3. Promote the 1d5/2 neutron to the next level, which is 

probably 2s1/2 (or the nearby 1d3/2), giving a 

configuration of (1d5/2)
-1

 (1s1/2)
1
 or (1d5/2)

-1
 (1d3/2)

1
.  
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The above three possibilities can be represented 

schematically as in Fig. 7.18. 

 
 

Figure 7.18. Illustration of the three possibilities for the 

first excited state of 
17

O. 

 

Following the diagram of Fig. 7.14, the third of these 

possibilities would correspond to the smallest energy shift, 

so it should be favored over the others. The next excited 

state might involve moving the last neutron up a further 

level to1d3/2, or putting it back where it was and adopting 

configurations (1) or (2). Option (2) is favored over (1) 

because it keeps the excited neutron paired with another, 

which should have a slightly lower energy than creating two 

unpaired protons. When comparing these predictions with 

the observed excited levels, it is found that the expected 

excited states do exist, but not necessarily in precisely the 

order predicted.  

The shell model has many limitations, most of which can 

be traced to its fundamental assumption that the nucleons 

move independently of one another in a spherically 
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symmetric potential. The latter, for example, is only true for 

nuclei that are close to having doubly-filled magnetic shells 

and predicts zero electric quadruple moments, whereas in 

practice, many nuclei are deformed and quadruple moments 

are often substantial. We discuss this important observation 

in the next section. 

  

7.5. Collective Model  
 

For heavy nuclei, many predictions of the single-particle 

shell model do not agree quantitatively with experiment. The 

discrepancies are particularly severe for magnetic dipole 

moments. Also, the shell model predicts vanishingly small 

quadrupole moments for closed shells and quadrupole 

moments of opposite sign for neighboring nuclei with 

atomic numbers Z ± 1. Although this agrees qualitatively 

with experiments, the measured values of quadrupole 

moments are very different from the predictions. In fact, 

some heavy nuclei appear to have large permanent electric 

quadrupole moments, suggesting a non-spheroid in the 

shape of these nuclei. This is certainly not consistent with 

the assumptions of the shell model, where rotational 

symmetry plays a crucial role.  

In a revival of the liquid drop model, A. Bohr noted that 

many properties of heavy nuclei could be attributed to a 

surface motion of the nuclear liquid drop. Furthermore, 

James Rainwater showed that excellent agreement between 

the expected and measured values of magnetic dipole, and 

electric quadrupole moments could be obtained under the 

assumption that the liquid drop had a spherical shape. These 

successes presented somewhat of a dilemma because the 

liquid drop model and the single-particle shell model had 

fundamentally opposite viewpoints about the nature of 



283 

 

nuclear structure. Individual particle characteristics, such as 

intrinsic spin and orbital angular momentum, play no role in 

a liquid drop picture, where collective motion that involves 

the entire nucleus has prime importance. On the other hand, 

individual nucleon properties, especially of the valence 

nucleons, are crucial to the success of the independent-

particle shell model. The shell model had yielded too many 

important nuclear features to be abandoned outright and 

reconciliation between the two extreme views was needed.  

The reconciliation was brought about by A. Bohr, Ben 

Mottelson and James Rainwater who proposed a collective 

model for the nucleus to provide many features that were not 

present in the shell or the liquid drop model. In what 

follows, we describe this model only qualitatively. Its basic 

assumption is that a nucleus consists of a hard core of 

nucleons in the filled shells, and outer valence nucleons that 

behave like the surface molecules in a liquid drop. The 

surface motion (rotation) of the valence nucleons introduces 

a non-spheroid in the central core, which in turn affects the 

quantum states of the valence nucleons. In other words, one 

can think of the surface motion as a perturbation that causes 

the quantum states of the valence nucleons to change from 

the unperturbed states of the shell model. This adjustment 

accounts for the difference in predictions for dipole and 

quadrupole moments from those given by the shell model.  

Physically, one can view the collective model as a shell 

model with a potential that is not spherically symmetric. 

Spherically symmetric nuclei are, of course, insensitive to 

rotations, and consequently rotational motion cannot 

produce additional (rotational) energy levels in such nuclei. 

Spherical nuclei, on the other hand, can have additional 

energy levels because of the presence of rotational and 



284 

 

vibrational degrees of freedom. These types of effects 

modify the predictions of the simple shell model. 

In particular, large non-spheroid in nuclei can provide 

large permanent dipole and quadrupole moments. 

Mathematically, these ideas can be incorporated as follows. 

For simplicity, we assume the nucleus to be an ellipsoid 

defined by the form:  

 

ax
2
+ by

2
 + z

2
/ab = R

2
                                              7.72 

 

where a and b are parameters related to the deformation 

from a spherical shape of radius R. The mean potential for 

nuclear motion can then be chosen as: 

 

                                 0  for ax
2
 + by

2
 + 4 < R

2
 

V(x, y, z) =                                                               7.73 

                         ∞ otherwise. 

 

Needless to say, more realistic calculations in the 

collective model provide even better descriptions of nuclear 

properties, but they also become far more complicated. 

One of the important predictions of the collective model 

is the existence of rotational and vibrational levels in a 

nucleus. These levels can be derived much the same way as 

is done for the case of molecules. Thus, we can add an 

additional term to the spherically symmetric nuclear 

potential of the shell model, to account the centrifugal 

contribution of the form ℓ(ℓ + 1)ħ
2
/2Im (where the effective 

moment of inertia of the nucleus Im = mr
2
 is a function of the 

nuclear shape). As a result, the well becomes narrower and 

shallower for the higher orbital angular momentum states, 

and an attractive spin-orbit contribution. Its effect comes 

from the fact that when a nucleon is moving near the surface 



285 

 

of the nucleus, where the density of nucleons is decreasing, 

it will pass more nucleons on the inside of its orbit than on 

the outside. Therefore, there will be a net potential energy 

decrease, if S is parallel to L, and a net increase, if S is 

antiparallel to L. The effects are illustrated in Fig. 7.19 and 

Fig. 7.20). Notice that for ℓ = 0 both are absent.  

Finally, the collective model accommodates quite 

naturally the decrease of the spacing between the first 

excited state and the ground level in even-even nuclei with 

increasing A, since the moment of inertia grows with A, 

which decreases the energy eigenvalue of the first excited 

rotational state. Also the fact that the spacing is largest for 

nuclei with closed shells should be taken into account. This 

is due to the fact that a nucleus with a closed shell should 

not have a rotational level because such a nucleus would 

tend to be spherical. On the other hand, such a nucleus can 

have vibrational excitations. However, vibrational 

excitations involve the entire core and not just the surface. 

The core being much more massive implies that the energy 

level for vibration will lie far higher, and the spacing 

between the ground state and the first excited state will be 

much greater.  
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Figure 7.19. Energy levels and wave functions for a square 

well for ℓ = 0, 1, 2, and 3. 
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Figure 7.20. The effect of spin-orbit interaction on the shell-

model potential. 

 

We conclude this chapter with the remark that in addition 

to the bound states in the nuclear potential well there exists 

also virtual states (levels) which are positive energy states in 

which the wave function is large within the potential well. 

This can happen if the de Broglie wavelength is such that 

approximately standing waves are formed within the well. 

(Correspondingly, the reflection coefficient at the edge of 

the potential is large). A virtual level is, therefore, not a 

bound state; on the other hand, there is a non-negligible 

probability that inside the nucleus a nucleon can be found in 

such a state. See Fig. 7.21. 
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Figure 7.21. Schematic representation of nuclear levels. 
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Problems: 
 

7-1. Derive in details the total kinetic energy of the 

nucleus (Eq. 7.9). Then expand your derivation to get the 

symmetry energy (Eq.7.11). 

 

7-2. For each of the following nuclei, use the 

semiempirical mass formula to compute the total binding 

energy and the Coulomb energy.        
  

  
       

   . 

 

7-3. The nuclear binding energy may be approximated by 

the empirical expression (Eq. 7.32) 

a- Explain the various terms in this expression. 

b- Considering a set of isobaric nuclei (nuclides that have 

the same mass number A), derive a relationship between 

A and Z for naturally occurring nuclei. 

c- Use a Fermi gas model to estimate the magnitude of asy. 

You may assume that A ≠ 2Z and the nuclear radius is     

R = RoA
1/3

. 

 

7-4. Use the formula derived in the problem7-3-b to find 

the most stable isobar of A = 25. 

 

7-5. Use the semiempirical mass formula to estimate the α-

decay energy of     
   and compare it with the calculated 

value from Eq. 3.15. 

 

7-6. The numbers of protons and neutrons are roughly 

equal for stable lighter nuclei; however, the number of 

neutrons is substantially greater than the number of protons 

for stable heavy nuclei. For light nuclei, the energy required 

to remove a proton or a neutron from the nucleus is roughly 

the same; however, for heavy nuclei, more energy is 
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required to remove a proton than a neutron. Explain these 

facts, assuming that the specific nuclear forces are exactly 

equal between all pairs of nucleons. 

 

7-7.  

a- Calculate the electrostatic energy of a charge Q 

distributed uniformly throughout a sphere of radius R. 

b- Since     
           

   are “mirror nuclei”, their ground 

states are identical except for charge. If their mass 

difference is 6 MeV, estimate their radius (neglecting the 

proton-neutron mass difference). 

 

7-8. The nucleus     
   decays to its “mirror” nucleus     

   

by positron emission. The maximum (kinetic energy+mec
2
) 

energy of the positron is 3.48 MeV. Assume that the mass 

difference between the nuclei is due to the Coulomb energy. 

Assume that the nuclei to be uniformly charged spheres of 

charge Ze and radius R. Assuming that the radius is given by 

roA
1/3

, use the above data to estimate ro. 

 

7-9. The binding energy of     
   is 783.916 MeV. The 

binding energy of    
   is 782.410 MeV. Estimate the 

excitation energy of the lowest T = 6 isospin state in 
90

Zr. 

 

7-10. Consider a Fermi-gas model for atomic nuclei 

(containing protons and neutrons) in which the repulsive 

Coulomb force acting inside the nucleus gives rise to an 

approximate but constant Coulomb potential energy term. 

Thereby, we consider the nucleus as a homogeneously 

charged sphere with radius R = roA
1/3

(with ro = 1.2 fm). 

Show that the following expression between the proton and 

neutron numbers exists:     (            )
   

. 
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Determine the constant value of b, using the Fermi-gas-

model parameters only. Replace Z (Z - 1) → Z
2
: use values 

of the various constants. 

 

7-11. The spin-parity of 
9
Be and 

9
B are both 3/2

-
. Assuming 

in both cases that the spin and parity are characteristic only 

of the odd nucleon, show how it is possible to obtain the 

observed spin-parity of 
10

B (3
+
). What other spin-parity 

combinations could also appear? (These are observed as 

excited states of 
10

B.) 

 

7-12. Give the expected shell model spin and parity 

assignments for the ground states of (a) 
7
Li, (b) 

11
B, (c) 

15
C, 

(d) 
17

F, (e) 
31

P, (f) 
141

Pr. 

 

7-13. The low-lying levels of 
13

C are ground state, 1/2
-
; 

3.09 MeV, 1/2
+
; 3.68 MeV, 3/2

-
; 3.85 MeV, 5/2

+
. The next 

states are about 7 MeV and above. Interpret these four states 

according to the shell model.  

 

7-14. Fig. 7.18 illustrates the three possibilities for the first 

excited state of 
17

O. Compute the energies values of the 

levels to prove the related conclusion. 

  

7-15. In an odd-odd nucleus, the last neutron and proton go 

into a 1d3/2 and a 1g9/2 level, respectively. Use the shell 

model to predict the spin and parity of this nucleus. 

 

7-16.  

a- What spin-parity and isospin would the shell model 

predict for the ground states of           
  

 
  

 
  ?  
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b- Order the above isobaric triad according to mass with the 

lowest mass first. Briefly justify your order.  

c- Indicate how you could estimate rather closely the energy 

difference between the two lowest-mass members of the 

above triad. 

 

7-17. The level scheme of Fig. 7.14 would lead us to expect 

I
π
 = 11/2

-
 for the ground state of     

   , while the observed 

value is 1/2
+
. A similar case occurs in     

    (N = 125) and 

    
    (N = 119), where 13/2

+
 is expected but 1/2

-
 is 

observed. Given that the pairing force increases strongly 

with ℓ, give the shell-model configurations for these nuclei 

that are consistent with the observed spin-parity 

assignments.  

 

7-18. In the single particle shell model, the ground state of a 

nucleus with an odd proton and an odd neutron is 

determined from the coupling of the proton and neutron 

shell model states: I = jp +jn. Consider the following nuclei: 

                 
  

 
  

 
         

  . Draw simple 

vector diagram illustrating these couplings, then replace      

jp and jn, respectively by ℓp +sp and ℓn +sn. Examine your 

four diagrams and deduce an empirical rule for the relative 

orientation of sp and sn in the ground state. Finally, use your 

empirical rule to predict the I
π
 assignments of 

           
  

  
  .   

 

7-19. If the energy of a single-particle state in the absence 

of spin-orbit splitting is Eo, find the energies of the two 

members of the spin-orbit doublet whose difference is given 

by Eq. 7.61. Then, show that the center of gravity of the 

doublet is Eo.  
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7-20. Illustrate the degeneracy of each energy level from s 

to g and their corresponding spin-orbit pair. Then, compute 

the energy difference of each spin-orbit pair in MeV. 

 

7-21. Consider a nuclear level corresponding to a closed 

shell plus a single proton in a state with the angular 

momentum quantum numbers l and j. Of course j = l ± 1/2. 

Let gp be the empirical gyromagnatic ratio of the free proton. 

Compute the gyromagnatic ratio for the level in question, for 

each of the two cases j = l + 1/2 and j = l − 1/2. 

 

7-22. The low-lying levels of 
17

O and 
19

O differ primarily in 

the presence of states of I
π
 =3/2

+
 and 9/2

+
 in 

19
O; these two 

states have no counterparts in 
17

O. Show that these two 

states could result from the configuration (d5/2)
3
 and thus are 

not expected in 
17

O. 

 

7-23. Among the energy levels of a central force potential is 

a level labeled 1d. Suppose we now add a spin-orbit 

interaction term to the Hamiltonian such as in the shell 

model. Using the spectroscopic notation, label the new 

levels that evolve from this 1d level. Specify how many 

nucleons can go into each of the new levels, and explicitly 

write out the quantum numbers specifying the wave function 

of each nucleon.  
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CHAPTER 8 
 

INTERACTION OF CHARGED 

PARTICLES WITH MATTER  

(DIRECT IONIZING RADIATION) 

 

The interactions of radiations with an external matter 

allow us to observe radiation and its effect, and to determine 

the nature of transition inside the nucleus. The interaction of 

radiation with matter is also the cause of chemical, physical 

and biological changes that concern the public at large.  

 

8.1. Ionizing Radiation 

 
Ionizing radiation is radiation with enough energy so that 

during an interaction with an atom, it can remove tightly 

bound electrons from the orbit of an atom, causing the atom 

to become charged or ionized. 

All radiation can be divided into two main categories, 

ionizing radiation and non-ionizing radiation. Charged 

particles (hadrons and leptons), heavy ions and photons are 

considered ionizing radiation, as they can ionize an atom 

through electromagnetic interactions. Radiation such as 

infrared, microwave, long radio wave, and visible light and 

other neutral hadrons that do not ionize atoms or molecules 

on its path are called non-ionizing radiation. 

Ionizing radiation consists of alpha, beta, protons,         

X-rays, cosmic rays and gamma rays that are energetic 

enough to detach electrons from atoms or molecules, 

ionizing them. The occurrence of ionization depends on the 

energy of the impinging individual particles or waves, not 
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on their number. An intense flood of particles or waves will 

not cause ionization if these particles or waves do not carry 

enough energy to be ionizing. Roughly speaking, particles or 

photons with energies above a few electron volts (eV) are 

ionizing. 

Alpha and beta particles are considered directly ionizing 

because they carry a charge and can, therefore, interact 

directly with atomic electrons through coulombic forces 

(i.e., like charges repel each other; opposite charges attract 

each other). 

Gamma and X rays, which are electromagnetic, are 

indirectly ionizing radiation because they are electrically 

neutral (as are all electromagnetic radiations) and do not 

interact with atomic electrons through coulombic forces. 

Strictly speaking, neutrons do not cause ionization. 

However, they induce radioactivity and eventually lead to 

ionization. The neutron is an indirectly ionizing particle 

because it does not carry an electrical charge. Because of the 

interesting properties of neutrons in science and technology, 

a separate chapter will devoted to this topic.  

 

8.2. Reaction Cross-Section 
 

It is generally only possible to measure the probability of 

the interaction of radiation with atoms. In such 

circumstances, it is natural to introduce the statistical 

concept of “cross-section” for a given interaction. 

Since interactions in a reaction take place with individual 

target nuclei independently of each other, it is useful to refer 

the probability of nuclear reaction to one target nucleus. We 

need neither assume that a nucleus is spherical in shape nor 

that it behaves as a solid elastic sphere of radius R toward 

projectiles particle. We sometimes talk of the "geometrical" 
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cross section given by πR
2
, where R is the radius of the 

nucleus given by Eq.1.28. However, a more useful concept 

is the cross section of a nucleus for a given process such as 

the cross section for the scattering of charged particles, or 

for the absorption of certain particles or radiation such as 

gamma rays.  

To follow such concept experimentally, assume a 

sufficiently thin slab of target material of area A and 

thickness δx (say one atomic layer thick) containing Nt 

nuclei as a spheres of radius Rc (also called impact 

parameter) is struck by a monoenergetic beam consisting of 

No free particles, as shown in Fig. 8.1. A certain fraction of 

the beam particles will interact with the target nuclei, either 

scattering into a new direction or reacting in a way that 

particles are created or destroyed. A point-like particles 

impinging upon the slab at a random position will have a 

probability δP of hitting one of the nuclei that is equal to the 

fraction of the surface area covered by a nuclei. 

 

2
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Here, Nt = n×A×δx, where n is the number of nuclei per unit 

volume.  

In the mean time, if Ni is the number of particles that are 

lost due to the interaction with the target nuclei, then: 
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 from which: 
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Figure 8.1. A monoenergetic beam of No particles 

incident normally upon a thin target of n nuclei per unit 

volume. Each circle represents the cross section ζ associated 

with a target entity such as an atom. 

 

Eq. 8.3 can be used to determine the nuclear reaction 

cross section from empirical data. 

Since the nuclear radius is roughly 10
-12 

cm, the 

geometrical cross sectional area is of the order of 10
-24 

cm
2
. 

Hence, we might expect that nuclear cross sections (ζ) are of 

the same order of 10
-24 

cm
2
, without misleading the 

geometrical nuclear geometrical cross sectional area. Since ζ 

can be much larger (or smaller) than the geometrical cross 

section of the nucleus due to resonance effects, this in turn, 

are a consequence of the quantum mechanical nature of the 

particle and the nucleus. It has been found convenient to use 

a separate name for this area. The name adopted is barn (b); 

that is, 1 b = 10
-24 

cm
2
.  
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The above discussion can be applied to any type of 

nuclear reaction. Thus, ζs may denote the cross section for 

scattering of a given kind of incident particle, ζa refer to 

absorption cross section and ζ(x,y) indicate individual 

reactions. 

The expression for the number of processes of a given 

kind of reaction, say the i
th

 kind, contains the product nζi. 

This product represents the cross section, for the i
th

 process, 

of all the atoms in a cubic centimeter of material. It is 

sometimes called the macroscopic cross section which has a 

unit of cm
-1

, and dented by Σ, while ζ is called microscopic 

cross section: 
 

ii n                                                              8.4 

 

Accordingly, the usual procedure for dealing with mixtures 

and compounds is to assume that each atom scatters 

independently. This represents the macroscopic cross section 

of the mixture. If the cross section for element j summed 

over all the interaction processes of interest is denoted by ζj, 

the cross section per molecule is the sum of the cross 

sections for all the atoms in the molecule. If the volume of 

the compound V contains a total mass M = ρV and the mass 

of each element is Mj, the mass fraction is wj = Mj /M. The 

total number of atoms of species j in volume V (number 

density) is A

j

j

j

Aj

j N
A

w

VA

NM
n   , where NA is Avogadro‟s 

number. 

The mass fraction of element j in a compound containing 

aj atoms per molecule with atomic mass Aj is wj = ajAj /Amol, 

where Amol is the molecular weight. Therefore: 
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Where the factor nmol = ρNA/Amol is the number of molecules 

per unit volume. When a target entity (molecule) consists of 

a collection of sub-entities (atoms), we can say that, in this 

approximation (all sub-entities interacting independently), 

the cross section per entity is the sum of the cross sections 

for each sub-entity. For example, for the molecule CH4, the 

total molecular cross section is  

4ζhydrogen + ζcarbon and the molecular weight is 

Amol = [(4 × 1) + 12] = 16 g mol
−1

. 

 

8.2.1. Attenuation cross section 
 

The attenuation of a beam of particles or electromagnetic 

ray with identical energies, all traveling in the same 

direction, is described by an exponential law. This 

exponential attenuation law follows from the fact that, over 

any short distance, the probability of losing a particle from 

the beam is proportional to the number of particles left.  

The transmission method for the experimental 

determination of cross section is based on measurements of 

the attenuation of the monoenergetic radiation beam after 

passing through a slab of target material of finite thickness. 

Suppose a collimated beam of particles strikes 

perpendicularly a specified area of material of appreciable 

thickness as in Fig. 8.2. Consider a thin layer, of thickness 

dx, parallel to the surface; then it follows that nζdx is the 

fraction of the particles falling on this layer. This may be set 
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equal to –dΦ/Φ, where Φ is the beam flux (number of 

particles per unit area per sec) and –dΦ is the decrease in the 

particles per unit area as the result of passing though the 

thickness dx of target material. Consequently, 

 

dxn
d


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
                                                          8.6 

and integration over the thickness x of the material gives: 

x
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                                                        8.7 

 

where Φo is the incident flux or number of incident particles 

falling on a particular area and Φx is the numbers which 

succeed in passing through x cm of the material over the 

same area. The cross section determined in this manner is 

the total cross section (absorption, scattering) ζ = ∑ζi.   

 

 
 

Figure 8.2. Attenuation of a collimated particle beam in 

passage through a slab. 
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8.2.2. Differential scattering cross section 

 

It is frequently useful to introduce a generalization of the 

concept of a particle cross section characterizing the 

scattering cross section. In such reactions, the incident 

particle will usually experience a change in both directions 

of motion and energy in the scattering event, (just imagine a 

billiard-ball collision). The microscopic scattering cross 

section will describe the probability that such a scattering 

collision occurs. However, it provides no information about 

the change in particle direction or energy that occurs in such 

a collision. This latter information is very important in 

certain types of neutron-nucleus interactions. To 

characterize it, we must introduce the concept of the 

differential scattering cross section. 

To describe cross sections characterizing changes in 

particle energy and direction, one must utilize a bit of vector 

notation. The natural choice would be the particle velocity v. 

Then the cross section we wish to define would describe the 

probability that a particle incident with a velocity v would be 

scattered by an atomic electron or nucleus to a new velocity 

v'. It is essential to decompose the particle velocity vector 

into two components, one variable characterizing the 

particle speed or kinetic energy (more convenient in 

neutron-nucleus interaction, will be discussed in chapter 10) 

and a second variable for the particle direction of motion.  

To specify the direction of particle motion, we introduce 

a unit vector Ω = v / |v| in the direction of particle velocity.   

To know the probability that particles are scattered from 

an incident direction Ω to a final direction Ω', ζ(Ω→Ω') we 

have to consider the probability that they are scattered into a 

small solid angle dΩ, Fig. 8.3. In this case ζ(Ω→Ω'), can be 

written as the differentiation of ζ(Ω) = ζ:  
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Figure 8.3. The scattered particle within a solid angle 

dΩ = sinθ dθ dθ surrounds the direction defined by 

angles θ and θ. 

 

The differential cross section ζ(Ω→Ω') is related to our 

earlier microscopic cross section by integration over all final 

directions: 
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 It should be mentioned that the dependence of the 

scattering cross section ζ(Ω) on the incident particle 

direction is usually ignored; it depends on the scattering 

angle θ, or more conveniently, the cosine of this scattering 

angle μo=cosθ. In other words, the cross section has no θ 

dependence, then the integration over θ can be carried out 
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and dΩ = 2π sinθ dθ, Fig. 8.3. While if the target or beam 

particles are polarized, it can be a function of the azimuthal 

angle θ.  

 

8.2.3. Mean free path 
 

As particles pass through material, they undergo 

collisions that may change their direction of motion. The 

average distance between these collisions is, therefore, a 

measure of the probability of a particular interaction. This 

distance, generally known as the mean free path, is inversely 

proportional to the cross section and the density of the 

material, which is: 

 


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n
                                                        8.10    

 

Note that the definition of the mean free path depends on 

the type of cross section used in the calculation. For 

example, if scattering cross section is used, the mean free 

path would correspond to just the scattering process. 

However, in most instances, such as when calculating the 

shielding required in a radiation environment, one uses total 

cross section, which gives the total mean free path. 

 

8.3. Interactions of Charged Particles 
 

It is natural when a free charged particle, with a certain 

kinetic energy passes through material; it faces the atoms 

and their constituents (negative electrons and positive 

nucleus). Three possible interaction processes may take 

place with different probability of each process; interaction 
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with the electrons of the atom, interaction with the nucleus, 

or radiation due to deceleration of the particle. 

The basic mechanism for the interaction of a moving 

charged particle is Coulombic interactions between the 

particle and electrons in the medium. This is common to all 

charged particles. The particle loses on the average not more 

than a few electron volts of kinetic energy; ionization and 

excitation of atoms give the greatest energy loss per unit 

path length of the particle.  

While in the interaction with the nucleus (nuclear 

interaction), the loss of kinetic energy would be much larger, 

but the probability of such collision are extremely rare 

compared to atomic interaction. Roughlyit is in proportion to 

the area of cross section of nucleus compared to that of the 

atom (10
-26

cm
2
 / 10

-18
cm

2
= 10

-8
). Hence, the interactions 

with nuclei do not contribute appreciably to the overall 

energy loss. 

For kinetic energies larger than the rest mass energy of 

the particle, moc
2
, energy loss by emission of 

electromagnetic radiation becomes increasingly important. 

The radiation is called Bremsstrahlung-breaking 

(decelerating radiation). It is caused by the same mechanism 

as the emission of continuous X-ray. The basic process can 

be understood classically. According to Maxwell's 

equations, any accelerated charge radiates electromagnetic 

radiation. If a charged particle passes close to a nucleus, its 

velocity vector will be rapidly changed (at least in direction 

if not in magnitude), so that the particle undergoes an 

acceleration and hence it radiates. Radiation is only 

important for electrons and occurs in a certain fraction of the 

elastic electron scatterings from the target nucleus. Nuclear 

scattering causes a fairly large change in the electron 

acceleration and consequently its energy. 
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If we ignore nuclear forces and consider only the 

interactions arising from Coulomb forces, we can speak of 

four principal types of charged-particle interactions: 

1- Inelastic Collision with Atomic Electrons. This is the 

principal process of energy transfer, particularly if the 

particle velocity is below the level where Bremsstrahlung 

is significant. It leads to the excitation of the atomic 

electrons (still bound to the nucleus) and to ionization 

(electron stripped off the nucleus). Inelastic here refers to 

the excitation of electronic levels. 

2- Inelastic Collision with a Nucleus. This process can leave 

the nucleus in an excited state or the particle can radiate 

(Bremsstrahlung). 

3- Elastic Collision with Atomic Electrons. The process is 

elastic deflection which results in a small amount of 

energy transfer. It is significant only for charged particles 

that are low-energy electrons. 

4- Elastic Collision with a Nucleus. This process is known 

as Rutherford scattering. There is no excitation of the 

nucleus, nor emission of radiation. The particle loses 

energy only through the recoil of the nucleus. 

In general, interaction of type (1), which is sometimes 

simply called collision, is the dominant process of energy 

loss, unless the charged particle has a kinetic energy 

exceeding its rest mass energy, in which case the radiation 

process, type (2), becomes important.    

 

8.3.1. Energy-Loss mechanisms: Stopping power  
 

Each interaction of a charged particle with atomic 

electron usually causes only a slight decrease in the 

particle‟s energy, and it is convenient to follow the charged 

particle along its path.  
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It is convenient to speak of how much energy the charged 

particle loses per unit path length, the stopping power and 

roughly its range (the total distance it travels before losing 

all its energy). The stopping power is the expectation value 

of the amount of kinetic energy T lost by the projectile per 

unit path length, denoted by S. The mass stopping power is 

the stopping power divided by the density of the stopping 

material (often we will say stopping power when we actually 

mean mass stopping power): 
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There are quantum mechanical as well as classical 

theories for calculating this basic quantity. One wants to 

express –dT/dx in terms of the properties specifying the 

incident charged particle, such as its mass M, velocity υ and 

charge ze, the properties pertaining to the atomic medium, 

the charge of the atomic nucleus Ze, the density of atoms n, 

and the average ionization potential I.  

We consider only a crude, approximate derivation of the 

formula for –dT/dx. We begin with an estimate of the energy 

loss suffered by an incident charged particle when it 

interacts with a free and initially stationary electron. Fig. 8.4 

shows a collision cylinder whose radius is the impact 

parameter b and whose length is the small distance traveled 

dx. If F be the coulomb force exerted on the electron, we see 

that the net momentum transferred to the electron Pe as the 

particle moves from one end of the cylinder to the other end 

is essentially entirely directed in the perpendicular direction 

(because Fx changes sign, so the net momentum along the 

horizontal direction vanishes) along the negative y-axis. 
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If the impact parameter of the collision is b and the speed 

of the particle υ, Pe can be estimated from the time of the 

impact dt = dx/ υ: 
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here, e = 4.8×10
-10

 esu. 

 The smaller the impact parameter is, the greater the 

momentum transfers to the electron. The kinetic energy 

acquired by the electron (transferred to the electron) is 

therefore: 
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Note that W does not depend on the mass of the 

projectile, but only on its speed. As the speed becomes less, 

the energy transfer becomes greater, because the projectile 

takes longer to move past the electron and the force is 

exerted for a longer time (as long as the time is still short 

enough so that the impulse approximation remains valid). 
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Figure 8.4. Collision cylinder for deriving the energy loss to 

an atomic electron by an incident charged particle. 

 

If there are n atoms per unit volume (number density) 

each with Z electrons, in a path length dx, there will be                   

nZ (2πb dbdx) electrons within a distance b to b + db from 

the path of the particle. To each of these electrons, the 

particle losses an amount of energy given by expression    

(Eq. 8.13) so that the total energy loss per unit path will be 

the result of multiplication: 
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Where bmax and bmin are the maximum and minimum impact 

parameters which one should specify according to the 

physical description he wishes to treat. 

This expression is an approximate, since for nearly head-

on collisions, Eq. 8.14 is not valid. In reality, the atomic 

electrons are rotating in certain orbits (not free electrons), so 

the charged particle must transfer at least an amount of 

energy equal to the first excited state of the atom. If we take 

the time interval of energy transfer to be Δt ≈ b / υ, the 

maximum time of impact (Δt)max must not be longer than the 

period of rotation of a typical electron in its orbit 1/ν, where 

ν is the frequency of rotation, i.e., (Δt)max ~ 1/ν = bmax/υ, 

then: 

 


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maxb                                                                 8.16 

 

Since hν ≈ Ī is the mean ionization potential. This gives an 

estimate of the maximum impact parameter: 

 

I

h
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
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Values of Ī have been calculated theoretically and also 

derived from measurements of the stopping power. They 

range from 14.8 eV for hydrogen to 884 eV for uranium. 

The value 14.8 eV is greater than the ground-state energy of 

hydrogen, 13.6 eV, because the ejected electron has some 

average kinetic energy. An empirical expression for Ī is        

Ī ≈ kZ, with k ~ 19 eV for H and ~ 10 eV for Pb.  

Next we estimate bmin by using the uncertainty principle 

to say that the electron position cannot be specified more 
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precisely than its de Broglie wavelength (in the relative 

coordinate system of the electron and the charged particle). 

Since electron momentum in the relative coordinate system 

is meν, we have: 

em

h
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Combining these two estimates we obtain: 
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or  
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In Eq. 8.19b, D = 4πNAe
4
/mec

2
 =0.32 MeV.cm

-1
 and        

β =υ/c. By introducing numerical values of the constants and 

if the target matter is of mass density ρ and consists of atoms 

of atomic number Z, atomic mass M(Z), the number of 

electrons per unit volume is (ρNA/M(Z))Z and the medium 

number density n = ρNA /M(Z) ≈ ρNA /A. 

In Eq. 8.19, we have inserted a factor of 2 in the 

argument of the logarithm; this is to make our formula agree 

with the result of quantum mechanical calculation which 

was first carried out by H. Bethe using the Born 

approximation. 

Eq. 8.19 is a relatively simple expression, yet one can 

gain much insight into the factors that govern the energy 

loss of a charged particle by collisions with the atomic 

electrons. We can see why the usual neglect of the 

contributions due to collisions with nuclei is justified. In a 

collision with a nucleus, the stopping power would increase 
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by a factor Z, because of the charge of the target nuclei with 

which the incident charged particle is colliding and decrease 

by a factor of me/M(Z). The decrease is a result of the larger 

mass of the recoiling target. Since Z is always less than 10
2
 

whereas M(Z) is at least a factor 2000 greater than me (for 
1
H 

as a medium, me/MH ≈ 1/1837), the mass factor always 

dominates over the charge factor. On the other hand, 

scattering from the weakly-bound atomic electrons (and 

ionization) represents an inelastic process that requires 

energy transfer. Consequently, the dependence of energy 

loss in Eq. 8.19b on the inverse of the mass of the target 

supports our previous contention that, ignoring strong 

nuclear collisions, small-angle scattering from atomic 

electrons is the dominant mechanism of energy deposition 

for massive charged particles traversing matter.  

Another useful observation is that (Eq. 8.18) is 

independent of the mass of the incident charged particle. 

This means that nonrelativistic electrons and protons of the 

same velocity would lose energy at the same rate or, 

equivalently, the stopper power of a proton at energy T is 

about the same as that of an electron at energy ~ T/2000. 

Eq. 8.19 describes the energy loss due to particle 

collisions in the nonrelativistic regime. One can include 

relativistic effects by replacing the logarithm in Eq.8.19 and 

introducing the velocity of the particle relative to the speed 

of light, β =υ/c and   2
1

221

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This correction can be important in the case of high 

energetic particles (produced in accelerator experiments), 
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electrons and positrons. The above expression for S has been 

confirmed for different kinds of media and various types of 

particles, over a wide range of energies. 

In light of the previous arguments, the relativistic factors 

that govern the energy loss of a charged particle can be 

discussed. Because of the β
-2

 dependence in Eq. 8.20, at low 

particle velocities, the ionization loss is quite sensitive to 

particle energy. In fact, this dependence on υ
-2

 suggests that 

particles of different rest mass (Mo) but same momentum (p) 

can be distinguished because of their different rates of 

energy loss. Although S has no explicit dependence on 

particle mass, for any fixed momentum, the effect of mass 

comes in through: 
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Consequently, at low velocities (γ ≈ 1), particles of the 

same momentum but different mass will display 

significantly different energy loss. Independent of particle 

mass, the stopping power decreases with increasing particle 

velocity and S displays a rather shallow minimum when γβ 

<< 3     (υ << 0.96c or T << 3Mc
2
) that is, the minimum 

occurs at higher momenta for more massive particles. This 

minimum in Eq. 8.20 is due to the convolution of the 

decrease in S caused by the β
-2

 dependence (β saturates at β 

≈ 1or υ = c at high energies) and the rise caused by the lnγ
2
 

term that is due to relativistic effects. When the stopping 

power is displayed as a function of γβ or P/Mc, S is almost 

independent of M, and we can, therefore, say that S "scales 

as" γβ or P/Mc, see Fig. 8.5. 
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Figure 8.5. Stopping power relative to its minimum 

value as a function of γβ or P/Mc. 

 

The relativistic β
2
 rise in S for γβ > 3 (T > 3Mc

2
) 

eventually plateaus (saturates) because of the presence of 

long-range inter-atomic screening effects (ignored in the 

Bethe-Bloch calculation). The total increase in ionization is 

rarely greater than 50% beyond the value measured for a 

"minimum-ionizing" particle, namely a particle that has       

υ << 0.96c (T<< 3Mc
2
). The relativistic rise is best 

observed in gaseous media and is only a several percent 

effect for dense materials. Nevertheless, this can be used to 

distinguish different particle types through their small 

differences in energy loss in gaseous detectors for energies 

corresponding to γβ > 3. 

At very high energies, after the saturation of the 

relativistic rise, ionization loss becomes an energy-

independent constant rate and it is, therefore, not possible to 

distinguish particle-types purely on the basis of ionization. 

Except in gaseous media, the stopping power at high 
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energies can be approximated quite adequately by the value 

when γβ ≈ 3. 

When γβ ≈ 3 (β = 0.9), the minimum value of the 

stopping power Smin for a particle can be evaluated 

approximately from Eq. 8.20 after inserting the values of 

constants and Ī ≈ 10Z. 
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The lnZ term is relatively small (< 4.5) for the heaviest 

elements and it varies slowly with Z. Let us, therefore, use    

Z ≈ 20 to get an approximate result: 
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                                 8.22 

 

As we mentioned before, Eq. 8.22 can also be used as a 

high-energy approximation for ionization loss in most 

media. 

We should also point out that, at very low energies, the 

stopping power in Eq. 8.20 becomes unphysical (negative), 

reflecting the fact that ionization loss is very small when the 

velocity of the particle is small. In this regime, the details of 
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the atomic-structure of the medium become important, and 

the incident particle can even capture electrons from the 

medium to form atomic systems of its own. 

As physics is an experimental science, experiments 

provide the foundation for our understanding of nature and 

physical laws. In these sub-atomic domains, scattering of 

particles from each other provides the primary source of 

information. To be more confident, we support the above 

discussion by experimental results. Fig. 8.6 shows an 

experimentally determined energy loss curve S for a heavy 

charged particle (proton) in air, on two energy scales.        

(a) An expanded low-energy region where, the Bethe 

formula applies down to T ~ 0.3 MeV with I ~ 80 eV. The 

stopping power decreases smoothly with increasing kinetic 

energy of the charged particle T below a certain peak 

centered about 0.1 MeV. Below this range charge loss 

energy due to electron capture causes the stopping power to 

reach a peak and starts to decrease. (b) A more compressed 

high-energy region where the stopping power reaches a 

broad minimum around 10
3
 MeV. Notice also a slight upturn 

as one goes to higher energies past the broad minimum 

which we expect is associated with relativistic corrections. 

Experimentally, the collision energy loss is measured 

through the number of ion pairs formed along the trajectory 

path of the charged particle. Suppose a heavy charged 

particle loses on the average an amount of energy W       

(Eq. 8.14) in producing an ion pair, an electron and a 

positive ion. Then the number of ion pairs produced per unit 

path is: 
 

S
W

i
1

                                                                 8.23 
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Figure. 8.6. The experimentally determined stopping power 

for protons in air, (a) low-energy region, (b) high-energy 

region. 

 

8.3.2. Range of charged particles 

 

As particles entering a matter with the same energy, it is 

normal to assume that all particles travel about the same 
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distance before coming to rest. This distance is called the 

range. Roughly, the range is the total distance the particle 

travels before losing all its energy. 

We can estimate the range from the stopping power as it 

represents an average energy loss per unit path length. The 

actual energy loss fluctuates about the mean values given by 

the stopping power. If these fluctuations are neglected and 

the projectiles are assumed to lose energy continuously 

along their tracks at a rate equal to the stopping power, one 

is making the continuous slowing-down approximation 

(CSDA). In this approximation, one can calculate the range, 

the distance a particle with initial energy To travels before 

coming to rest or reaching some very small final kinetic 

energy Tf ≈0: 

 
f

o

o

f

T

T

T

T

R

S

dT

dxdT

dT
dxR

0
                      8.24 

 

The CSDA range is not directly measurable. The range of 

a single particle may be slightly larger or smaller than 

expression 8.20 because there are statistical variations in the 

amount of energy lost per unit path length and in the total 

number of ions pairs formed. This is called straggling as 

shown in Fig. 8.7. 

Measurements of the fraction F(R) of monoenergetic 

particles in a beam that passes through an absorber of 

thickness R gives a curve like that of Fig. 8.7. Various 

ranges can be defined using this curve. The most easily 

measured range is the median range R50, corresponding to an 

absorber thickness that transmits 50% of the incident 

particles. The extrapolated range Rex is obtained by 

extrapolating the linear portion of the curve to the abscissa. 

The maximum range Rm is the thickness that just stops all of 
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the particles; it is, of course, very difficult to measure. If 

F(R) is known accurately, one can define a mean range 

<R>. 
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The range is expressed in g cm
-2

; that is, the range in cm 

multiplied by the density of the matter. Like mass stopping 

power, the range in g cm
-2

 applies to all materials of similar 

atomic composition.  

For two heavy charged particles of rest masses and 

charge M1, z1 and M2, z2 at the same initial speed β, the ratio 

of their ranges can be simply determined by scaling low: 
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If particle number 2 is a proton (M2 = 1 and z2 = 1), the 

range R of the other particle is given with respect to the 

range of proton Rp(β) by:  
  

2
)()(

z

M
RR p                                                         8.27 

 

Another useful relation, Bragg and Kleeman gave a 

formula to compute the range of a particle in a medium if its 

range is known in another medium. 
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1

A
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
                                                          8.28 
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Here, ρ and A represent the density and atomic mass of the 

materials. If we have a compound material, a molecular 

weight (as in section 8.2) is given by, 
i i

ii

mol
w

Aa
A . 

 

 
 

Figure 8.7. The ranges of charged particles, the median 

range R50, extrapolated range Rex, and maximum range Rm. 

 

8.3.3. Newtonian dynamics of the collision 
 

In non-relativistic Newtonian dynamics, when a 

projectile object (particle or ion) of mass M of a velocity ν 

hits a stationary object (orbital electron or nucleus) of mass 

m head-on, the laws of dynamics predict the energy lost by 

the incident particle (transferred to the electron or nucleus). 

As discussed in Chapter 3, the maximum possible energy 

transferred Wmax to the target, can be calculated using 

conservation of energy and momentum. 
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2max
)(

4

mM

mMT
W


                                                    8.29 

 

where 2

2

1
MT   is the initial kinetic energy of the incident 

particle.  

 The incident particle can scatter from stationary nuclei, 

while the following assumptions of ionization or excitation 

of atomic electrons are required:  

1. The particle moves rapidly compared with the electron. 

2. For maximum energy transfer, the collision is head-on. 

3. The energy transferred is large compared with the 

binding energy of the electron in the atom. 

4. Under these conditions, the electron is considered to be 

initially free and at rest, and the collision is elastic. 

The energy transferred is a very small fraction of the 

incident particle's energy when a massive particle collides 

with a much lighter particle, the atomic electron. However, 

when M = m (case of incident electron), all the kinetic 

energy is transferred to the target electron (Te =T) and the 

projectile electron stops.  

This result is strictly true only for particles traveling with 

speeds much less than that of light (non-relativistic speeds) 

but similar results are obtained also for relativistic particle 

speeds. When the collision is not head-on, the energy 

transfer to the target is less and, of course, the energy loss of 

the incident particle is correspondingly less. 
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8.4. Classification of Charged Particles 
 

Although the above fundamental mechanism operates for 

all kinds of charged particles, there are considerable 

differences in the overall patterns of energy loss and 

scattering between the passage of light particles (electrons 

and positrons), heavy particles (muons, protons, alpha 

particles and light nuclei), and heavy ions (partially or fully 

ionized atoms of high Z elements). Most of these differences 

arise from the dynamics of the collision process. In general, 

when a massive particle collides with a much lighter 

particle, the laws of energy and momentum conservation 

predict that only a small fraction of the massive particle's 

energy can be transferred to the less massive particle. The 

actual amount of energy transferred will depend on how 

closely the particles approach and restrictions imposed by 

quantization of energy levels. The largest energy transfers 

occur in head-on collisions.  

 

8.4.1. Heavy charged particles 
 

A charged particle is called „heavy‟ if its rest mass is 

large compared to the rest mass of the electron, mec
2
 or a 

particle with A ≥ 1. Thus, mesons, protons, α -particles, 

atomic nuclei from particle accelerators and, of course, 

fission fragments, are all heavy charged particles. The 

reason for differentiating between heavy and light charged 

particles is that the former, due to their heavier mass and 

higher charge, experience stronger Coulomb force of nuclei 

than the latter. Furthermore, if they come close enough to 

nuclei, they can also be affected by the strong nuclear force, 

which on lighter particles, such as electrons, does not act. 

Consequently, the heavy charged particles behave quite 
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differently in matter than the light charged particles. The 

moving heavy charged particle exerts electromagnetic forces 

on atomic electrons and imparts energy to them. The energy 

transferred may be sufficient to ionize the atom or it may 

leave the atom in an excited, non-ionized state. A heavy 

charged particle can transfer only a small fraction of its 

energy in a single electronic collision. Its deflection is 

negligible. All heavy charged particles travel essentially 

straight paths in matter. At low to moderate energies the 

most important type of interaction for heavy charged 

particles is the so called Rutherford scattering.  

As discussed before, section 8.3.1, the energy loss 

mechanism shows a minimum when γβ ~ 3 (υ ~ 0.96c) or    

T ~ (3Mc
2
 ≈ Moc

2
), which differentiate the collisions with 

orbital electrons from radiation processes. For heavy 

particles, radiation occurs only at kinetic energies,                

~ 10
3
 MeV for proton and greater than that for the heaviest 

ones that it is of no practical interest for almost all heavy   

charged particles. The main interactions of heavy charged 

particles then are ionization and excitation of the atoms of 

the medium. 

The stopping power of a medium is determined using 

Eq.8.19. Born and Bethe have shown that the stopping 

power of heavy charged particles in a medium is 

proportional to the followings: 

1. The mass M(Z), of the atoms in the medium, thus, a 

medium consisting of heavy atoms has high stopping 

power.  

2. The square of atomic number z
2
, of the incident charged 

particle, therefore, for example, the stopping power of α 

particle is four times higher than that of proton of the 

same kinetic energy in the same type of media. 
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3.  The stopping power is inversely proportional to the 

energy of the particle, since 2
1

2 )2(
Mc

T . A fast moving 

particle deposits less energy per unit length on its track. 

High stopping power results in generating high ion pair 

density.  

Accordingly, the Born-Bethe formula for energy loss of 

charged particles can be written as: 
 

T

zZm
C

dx

dT
S

2)(
                                             8.30 

 

where C is constant. 

The stopping power of the medium is relatively small at 

the time when a heavy charged particle enters the medium 

because its energy is high. As it travels through the medium, 

it loses energy and the stopping power increases because the 

energy of the particle decreases. Thus, the ion pair's density 

generated along the paths of a particle is low at the time 

when it enters the medium and increases to a maximum 

called Bragg peak just before it stops. A plot of ion density 

as a function of the distance in the medium is called a Bragg 

curve. Such curve has a general shape as shown in Fig. 8.8.  

Heavy particles lose energy in a medium at a faster rate 

than light particles. Thus, they generate higher ion-pair 

densities on their tracks. Alpha particles generate denser ion-

pair densities than protons of the same kinetic energy in the 

same type of media. 

Several empirical and semi-empirical formulae have been 

proposed to compute range of α-particles in air.  

For example: 
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Figure 8.8. Ion pair density along the path of heavy 

charged particles in a medium. 

 

Similarly, the range of proton in air can be computed by: 
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To compute the range in some other material, Eq. 8.28 

can be used. For example, at normal pressure and 

temperature, the range of α-particles in any material x can be 

determined from: 

x

xairx
A

RR



41037.3                                         8.33 
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8.4.2. Light charged particles 
 

Particles with masses comparable to those of electrons 

are light charged particles. Essentially, they are high-speed 

beta particles, positron and electrons. Their rest mass is only 

1/1850 u (0.511 MeV), much lighter than those of protons.  

As compared to heavy charged particles, electrons behave 

quite differently when passing through matter. The main 

reason for this difference is, of course, the very small mass 

of electrons as compared to heavy charged particles. Due to 

their low mass, electrons travel so fast that their velocity 

may become very close to the velocity of light. A large 

deflection can occur with each interaction, resulting in many 

path changes (very tortuous) in an absorbing medium, since 

its mass is equal to that of an electron.  

The theory of relativity must be considered for a proper 

calculation of the velocity or speed of a high-energy 

electron. The mass, m, of 1 MeV beta particle is actually 

1.51 MeV, rather than 0.51 MeV (rest mass of electron). In 

general, for a  particle of kinetic energy T, its mass in u is, 

u
oT

m
5.931

511.
 .The velocity, v, is then calculated by Eq.1.11: 

  

m/s1082.2103)
51.1

51.0
(1)(1 8822  c

m

m
v o  

 

where c is the velocity of light, and mo is the rest mass of the 

electron. The velocity is 94% the speed of light. Therefore 

the computations become more complicated than for the 

heavy charged particles. 

In certain situations, an electron may even attain a 

velocity greater than the velocity of light in the same 

material. If this happens, a special kind of radiation, called 
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Cherenkov radiation, with a specific cone signature is 

emitted. As electrons pass through matter, they rapidly lose 

energy and hence decelerate. This deceleration gives rise to 

another type of radiation called Bremsstrahlung.  

Whenever an electron beam passes through a material, 

the individual electrons in the beam can interact with the 

target atoms or molecules mainly by collision (ionization or 

excitation) and radiation. Fig. 8.9 shows the contributions of 

both types of interactions on the stopping power of a high-Z 

medium like lead for electrons of various energies in 

addition to the proton, for comparison. It is interesting to 

note that except for the ionization process, the 

Bremsstrahlung remains the dominant mode of interaction 

from moderate to high energies. Therefore, the radiative 

component of the stopping power cannot be neglected in 

case of electrons. 

Radiation yield, Y, is defined as the average fraction of 

its energy that a beta particle radiates as Bremsstrahlung in 

slowing down completely. Radiation yield increases with 

electron kinetic energy T and with the atomic number of the 

absorber Z.  
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
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                                                  8.34  

 

An estimate of Y gives an indication of the potential 

Bremsstrahlung hazard of a beta-particle source. To limit Y, 

low Z materials (e.g., Al) should be used as shielding for β 

and electrons since Y increases with Z. At very high 

energies, the dominance of radiative over collisional energy 

losses gives rise to electron-photon cascade showers. High-

energy β particles emit high-energy photons. These, in turn, 

produce Compton electrons and electron-positron pairs, 
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which also produce in turn, additional Bremsstrahlung 

photons. 

At low to moderate energies, the collisional energy loss 

of electrons is quite significant and up to certain energy is 

higher than the radiative energy loss. Hence, the stopping 

power of a material for electrons consists of two 

components: collisional and radiative. 

 

Se = Scol. + Srad.                                                          8.35 

 

The analytic forms of the collisional and radiative 

components of the total stopping power for electrons, 

derived from Eq. 8.20 in terms of kinetic energy, can be 

written as: 
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From these two equations, we can deduce that the rate of 

energy loss of an electron through the collisional and 

radiative processes can be approximately expressed in terms 

of proportionality as: 

 

Scol α ln(T)     and   Srad α T                                        8.38 
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Figure 8.9. Stopping power verses particle energy, 

showing the contributions from collisions and radiation. 

 

This implies that the losses due to radiative effects such 

as Bremsstrahlung increase more rapidly than the losses due 

to collisional effects such as ionization. This can also be 

seen from Fig. 8.9, where the two effects have been plotted 

for electrons traveling through a slab of lead. The energy at 

which these two types of losses become equal is called the 

critical energy. A number of attempts have been made to 

develop a simple relation for this critical energy, the most 

notable of which is the one that uses the approximate ratio of 

Eq. 8.36 and 8.37 given by: 
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This equation clearly shows that, for materials with low 

atomic numbers and low incident electron energies, the 

collisional component of the stopping power dominates. 

Hence, most of the electrons in a beam of low energy 

electrons passing through a gas will loose their energy 

through collisions with the gas molecules. But for the same 

electrons passing through a high Z material (such as Lead), 

the radiative losses will be significant. 

The comparison of the energy dependent interactions of 

light and heavy charged particles with different target 

materials is shown in Table 8.1. The table shows the values 

of Wmax for representative projectiles and targets along with 

the percentage of the stopping power due to nuclear 

collisions. For electrons, it also shows the percentage of the 

stopping power due to radiative transitions. Electrons can 

scatter from nuclei, but the amount of recoil energy 

transferred to the nucleus is very small. Although electrons 

undergo a great deal of nuclear scattering, which results in a 

tortuous path through material, they lose very little energy in 

a nuclear scattering. The heavier projectiles can lose 

relatively more energy in each nuclear collision than in each 

electron collision. For a given kind of projectile, nuclear 

stopping is more important at lower energies, because less 

energy can be transferred to an electron. The heavier the 

projectile for a given energy, the more important the nuclear 

term becomes, for the same reason. 

The collision of electrons with electrons is a special case. 

Eq. 8.29 gives Wmax = T. Consider the collision of two 

billiard balls of the same mass. If the projectile misses the 

target, it continues straight ahead with its original energy 

and W = 0. If it hits the target head on, it comes to rest and 

the target travels in the same direction with the same energy 

that the projectile had "a situation indistinguishable from the 
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complete miss". It is customary (but arbitrary) in the case of 

identical particles to say that the particle with higher energy 

is the projectile, so Wmax = T/2. This adjustment has been 

made in Table 8.1 for electrons on electrons and protons on 

protons. 

 

Table 8.1. Comparison of relative importance of nuclear and 

radiative interactions for various projectiles and targets. 
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The range of a beam of monoenergetic electrons (all have 

the same kinetic energy) is not a well defined quantity 

compared to those of heavy charged particles, then there is 

more range straggling. In spite of the severe range 

straggling, kinetic energies of electrons can be estimated 

approximately by means of extrapolation. The extrapolation 

and the range straggling as seen from the plot of their 

intensity I (number of particles/cm
2
.sec) after they pass an 

absorber of thickness x is shown in Fig. 8.10. The 

measurement of the attenuation intensity of a beam of 

monoenergetic electrons has been seen to follow an 

exponential curve given by Eq. 8.7. x

ox eII   where Io is 

the incident intensity and  =nζ is the total macroscopic 

cross section or absorption coefficient of the material for the 

electrons and is also a function of the electron energy. In 

such a case the real range actually corresponds to the 

endpoint energy Re and the straggling length of electrons 

from a radioactive source.  

The absorption coefficient can be related to the endpoint 

energy Emax of the β spectrum by an empirical formula: 

 
14.1

max

12 17.0)(   Egcm                                          8.40 

   

The measurements of the attenuation of the β spectrum 

from a newly discovered (or unknown) isotope can be used 

to identify the energy of the β-decay. Also the attenuation of 

strong sources can be used to monitor the thickness of the 

shielding materials during manufacturing processes. 

Electrons have a greater range than protons if they all 

have the same kinetic energy, but the intensity drops 

gradually as the thickness increases. In contrast, the intensity 

of heavy particles remains essentially constant as the 
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thickness increases until the thickness is approximately 

equal to the range.  

 
 

Figure 8.10.  A schematic attenuation curve for a 

monoenergetic electron beam in a solid material. 

 

Although the best way to determine the range of 

electrons in a material is to perform an experiment as 

described above, however, it may not be always practical to 

do so. Fortunately enough, the range of electrons in any 

material can be fairly accurately determined from the 

following simple empirical formulae: 

 














MeV 2.5  Tfor              106.0530.0

MeV 2.5  T  0.01for         512.0
)(

ln0954.027.1

2

T

T
gcmR

T

  8.41 

 

According to the above equation, one can calculate the 

energy of the electron beam from the range: 
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Fig. 8.11 shows the ranges in g cm
-2

 of protons, alpha 

particles, and electrons in water or muscle (virtually the 

same), bone, and lead. For a given proton or alpha energy, 

the range in g cm
-2

 is greater in Pb than in H2O, consistent 

with the smaller mass stopping power of Pb, while for 

electron, the range deviates from this behavior at electron 

energy greater than about 20 MeV due to the fact of 

domination of radiation interaction.  

 

 
 

Figure 8.11. Ranges of protons, alpha particles, and 

electrons in water, muscle, bone and lead, expressed in cm
-2

. 
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Problems 

 

8-1. Show that the classical cross section for elastic 

scattering of point particles from an infinitely massive 

sphere of radius R is isotropic. 

 

8-2. Evaluate the stopping power of beryllium metal for 
18

O
8+

 ion with a kinetic energy 540 MeV (E/A=30 MeV) 

using a Bethe formula. The density of the beryllium metal 

is 1.85 g/cm
3
 and Z = 4.  

 

8-3. Which can transfer more energy to an electron in a 

single collision – a proton or an alpha particle? Explain. 

 

8-4. Astatine–211 is an alpha-emitting isotope that is used 

in radiation therapy by attaching it to a monoclonal 

antibody. The energy of the 
211

At alpha particle is 6.87 

MeV. 

a- What is the stopping power (– dE/dx) of water for the 
211

At alpha? 

    b- What is the range in water?  

 

8-4. What thickness of Lucite (density 1.19 g cm
-3

) would 

be required to completely shield the beta radiation from 

phosphorus-32 (1.7 MeV maximum energy).  

 

8-5. An electron emerges normally from a 7 mm-thick 

Lucite slab (density 1.19 g cm
-3

) with energy of 1.2 MeV. 

What was its energy when it entered the slab?  

 

8-6. Assume that the W values for protons and carbon-

recoil nuclei are both 30 eV ip-1 in C2H4 gas. What is the 
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maximum number of ion pairs that can be produced by a  

3 MeV neutron interacting elastically with (a) H or (b) C? 

 

8-7. A 
210

Po source is placed in an air ionization chamber 

and a saturation current of 8 x 10
-12

 A is observed. 

Assume all ionizations are due to 3.5 MeV alpha particles 

stopping completely in the chamber. How many particles 

per second are stopped in the chamber?  

 

8-8. A proton and an alpha particle with the same velocity 

are incident on a water target. Which will penetrate to a 

greater depth? Explain.  

 

8-9. What is the rate of energy loss of an 8 MeV α-particle 

in air? Assume air is 21% oxygen 79% nitrogen. 

 

8-10. A proton of kinetic energy 2.5 GeV passes through a 

sheet of lead 15 mm thick. The density of lead is         

11.4 × 10
3
 kg.m

-3
. Estimate the energy lost by the proton. 

 

8-11. The energy loss of a heavy charged particle (charge 

Ze) of speed v in a material with n atom per unit volume 

can be derived from Eq. 8.20. Show that this expression 

passes through a minimum as υ is varied and find the 

approximate kinetic energy of the particle at that speed. 

Relativistic expression must be used. 

 

8-12. Omitting the two speed terms (        ) in the 

derived expression in problem 8-11, calculate the energy 

loss of 10 MeV alpha particle in aluminum, for which   

Ῑ = 150 eV. 
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8-13. You can make a rough estimate of the range of 

(kinetic energy) 300 MeV muons moving through air by 

using the energy loss rate at minimum ionization. This 

rate is 0.2 MeV.m
2
.kg

-1
 and so the range is 300 MeV/0.2 

MeV.m
2
.kg

-1
 = 1500 kg.m

-2
. The density of air is 1 kg.m

-3
. 

How far will the muon travel? Is this an overestimate or 

an underestimate of the range? 

 

8-14. Assuming that the energy loss equation for protons 

and for nonrelativistic electrons are identical, at what 

kinetic energy does an electron have the same energy loss 

as a proton of 10 MeV?  

 

8-15. Use the graphs of Fig.8.9 to determine the dominant 

energy loss mechanism for electrons travelling through 

lead with energy (a) 100 keV, (b) 1 MeV, (c) 10 MeV and 

(d) 100 MeV.  

 

8-16. Estimate the minimum the value of the relativistic 

factor γ at which an electron will emit Cherenkov 

radiation when it is travelling through (a) water, (b) crown 

glass and (c) air. nwater = 1.33, nglass = 1.52, nair=1.0003.  

 

8-17.   

a- Explain why "Bremsstrahlung" is a more important 

energy loss mechanism for electrons than for protons 

travelling through matter. 

b- Explain why energy loss rate by "Bremsstrahlung" is 

greater for electrons travelling through lead than for 

electrons travelling through water. 
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CHAPTER 9 

 
INTERACTION OF GAMMA RAY WITH 

MATTER  

(INDIRECT IONIZING RADIATION) 

 
 

Gamma-rays as an electromagnetic wave are an important 

source of information about nuclear energy levels. The 

emission of γ-rays was regarded simply as a means by which 

a nucleus can pass from an excited state to a less excited 

one. Gamma-decay is in itself a subject of great theoretical 

and practical importance.  

 

9.1. Attenuation of Gamma-ray   
 

As discussed before, gamma radiation (γ emission) is a 

process of de-excitation of the atomic nucleus through the 

emission of a γ photon. The energy spectrum of γ radiation 

is discrete (linear). Since γ is one type of radioactive 

radiation, γ radiation is often considered a type of 

radioactive decay. However, in the case of γ emission, the 

composition of the atomic nucleus does not change (i.e., 

there is no change in the proton and neutron number).          

γ emission is a burst of very high energy as electromagnetic 

radiation of a very high frequency (wavelengths of 10
–10

 m). 

Since γ-ray is typically a photon, where photons are 

electromagnetic radiation with zero mass, zero charge, and a 

velocity that is always c, with energies in the range of          

~ 0.1–10 MeV, the interaction of γ-ray with matter is 

markedly different from that of charged particles such as     
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α or β-particles. Because they are electrically neutral, they 

do not steadily lose energy via columbic interactions with 

atomic electrons. In fact, photons are the carriers of 

electromagnetic force and can interact with matter in a 

variety of ways that lead to ionization of atoms and to 

energy deposition in a medium. The difference is apparent in 

the much greater penetrating power of γ-rays and in the 

absorption laws. Photons travel some considerable distance 

before undergoing a more “catastrophic” interaction leading 

to partial or total transfer of the photon energy to electron 

energy. These electrons will ultimately deposit their energy 

in the medium.  

As a beam of photons propagate through any material, 

the intensity of the beam will decrease as the photons, that 

interact, are removed but the energy of all the non-

interacting photons remains constant. The photons will 

interact in ways that predominantly release fast moving 

electrons, low energy photons will interact only once and 

give rise to a single electron, while energetic photons can 

interact several times and give rise to a few electrons. The 

most energetic photons can create a matter-antimatter pair of 

electrons that induces a cascade of electrons. 

The energy of the non-interacting photons remains 

constant so that the probability that a photon will interact in 

a fixed thickness of material will also remain constant 

regardless of the photon energy. This leads immediately to a 

characteristic exponential attenuation of electromagnetic 

radiation that is called the Beer-Lambert law and 

consequently have no definite range such as the one found in 

charged particles. Charged particles, especially heavy ones, 

lose their energy during the course of a large number of 

collisions with atomic electrons. The energy loss occurs in 
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many small steps and the particle gradually slows down until 

it is stopped altogether and absorbed.  

When a beam of γ-ray photons is incident on a thin 

absorber, however, each photon that is removed from the 

beam is removed individually in a single event. The event 

may be an actual absorption process, in which case the 

photon disappears or the photon may be scattered out of the 

beam. The one shot nature of the removal process is 

reasonable for the exponential absorption.        

The derivation of the exponential attenuation law is 

similar to the derivation of the exponential decay law of 

radioactive nuclei, as shown in section 4.3 alone. The 

analogy is that the probability of radioactive decay is 

constant in a given time interval. 

The general expression for the attenuation of photon is 

(see section Fig. 8.2 above):  
 

x

ox eII                                                            9.1 

 

The interaction is expressed through the total linear 

attenuation coefficient μ (cm
-1

) which does not depend on x 

but does depend on the energy of the incident gamma. By 

attenuation we mean either scattering or absorption. Since 

either process will remove the gamma from the beam, the 

probability of penetrating a distance x is the same as the 

probability of traveling a distance x without any interaction, 

e
-μx

. The attenuation coefficient is, therefore, the probability 

per unit path of interaction; it is what we would call the 

macroscopic cross section Σ= nζ in the case of neutron 

interaction. 

As in the case of other statistical processes, such as 

radioactive decay, we can define a half-thickness, x1/2, as the 

thickness of material that photons must traverse in order for 
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their intensity to fall to half of the original value. This can be 

related to μ by equating Ix=I1/2=Io/2 in Eq. 9.1, to get: 

 



693.02ln
2/1 x                                                          9.2 

 

Since photons interact with individual atoms, the 

probability that a photon will interact somewhere within a 

slab of matter depends on the total number of atoms ahead 

of it along its path. So the attenuation of radiation depends 

on the amount of material in the beam's path and not on how 

it is distributed. It is useful, therefore, to describe the 

attenuation process in a way that does not depend on the 

density of material, only on what kind of stuff it is. We can 

achieve that by defining the mass attenuation coefficient, 

µ/ρ, which is related to the linear attenuation coefficient by 

dividing µ by the density ρ of the material, usually expressed 

in cm
2
g

-1
. This means that the mass attenuation coefficient is 

the same for ice, liquid water and steam whereas the linear 

attenuation coefficients will differ greatly. 

If x1/2 is expressed in cm, μ must have units of cm
-1

, and 

when x1/2 is given in terms of g.cm
-2

, μ has units of cm
2
.g

-1
. 

The value of μ
-1

 is just the mean free path for absorption or 

the average distance through which a beam of photons will 

propagate before their number drops to 1/e of the initial 

value. 

There are several different processes of gamma 

interaction. Each process can be treated as occurring 

independently of the others; for this reason μ is the sum of 

the individual contributions. These contributions, of course, 

are not equally important at any given energy. Each process 

has its own energy variation as well as dependence on the 

atomic number of the absorber. We will focus our 
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discussions on the three most important processes of gamma 

interaction, Compton scattering, photoelectric effect, and 

pair production. These can be classified by the object with 

which the photon interacts and the type of process 

(absorption or scattering).  

 

9.2. Photoelectric Effect 
 

Photoelectric is the absorption of a photon followed by 

the ejection of an atomic electron. 

In the photoelectric process, all the energy hνo of the 

incident photon is transferred to a bound electron which is 

ejected from the atom with a kinetic energy Te = hνo −Be, 

where Be is the magnitude of the binding energy of the 

electron and depends on which shell the electron was in. 

Therefore, it is labeled BK, BL, and so forth; it represents the 

ionization potential of the electron in that atomic shell. The 

cross section for the photoelectric effect, η, is a sum of terms 

for each shell: η = ηK + ηL + ηM + …. 

As the energy of a photon beam is decreased, the 

photoelectric cross section increases rapidly. Because 

photon energies are too small to remove an electron from the 

K shell, the cross section for the K-shell photoelectric effect 

is zero. Even though photons do not have enough energy to 

remove an electron from the K shell, they may have enough 

energy to remove L-shell electrons. The cross section for L 

electron photoelectric effect is much smaller than that for K 

electrons, but it increases with decreasing energy until its 

threshold energy is reached. This energy dependence is 

shown for lead in Fig. 9.1, which plots the cross section for 

the photoelectric effect. The K absorption edge for the 

photoelectric effect is seen. The photoelectric effect below 
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the K absorption edge is due to L, M . . . electrons; above 

this energy the K electrons also participate.  

Formulas for the probability that a photon of energy 

Eγ=hνo will undergo photoelectric absorption have been 

derived by quantum mechanical methods. The cross section 

for this reaction has a strong Z dependence, the probability 

of photoelectric effect increases rapidly with atomic number 

of the target atom. In addition, it also has a strong inverse 

relationship with energy of the incident photon. Specifically, 

this dependence can be expressed as: 
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Photoelectric effect takes place predominantly in the K 

atomic shell and therefore generally the cross section related 

to K-shell interaction is used to estimate the total 

photoelectric cross section. The K-shell photoelectric cross 

section per atom is given by: 
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where 

2252 1065.6
3

8
cmreTh




                                       9.5 

 

is the Thompson scattering cross section. Thompson 

scattering is an elastic scattering process between a free 

electron and a photon of low energy. Low energy means the 
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energy at which the quantum effects are not significant, and 

cm
cm

e
r

e

e

13

2

2

1082.2  is the classical electron radius. 

 

 
 

Figure 9.1. Photoelectric cross sections or mass attenuation 

coefficient as a function of energy for hydrogen, carbon, 

iron and lead. The K and L absorption edge in lead while 

only K absorption edge in iron. 

 

An interesting aspect of photoelectric effect is that if the 

incident photon has sufficient energy to overcome the 

binding energy of an inner shell electron, that electron might 

get ejected leaving a vacancy behind. This vacancy can then 

be filled by an outer shell electron to stabilize the atom. 

Such a transition would emit a photon with energy equal to 

the difference of the two energy levels; see Eq.1.9. These 
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photons are generally in the x-ray region of electromagnetic 

spectrum and are called fluorescence photons. An x-ray 

photon emitted as a consequence of photoelectric effect can 

also knock off another orbital electron provided that its 

energy is equal to the binding energy of that electron. This 

electron is called Auger electron. The process is essentially 

radiationless because the excess energy of the atom is used 

and taken away by the Auger electron. An example of these 

processes is shown graphically in Fig. 9.2. Here, an incident 

photon knocks off the K-shell electron, creating a vacancy. 

For the atom to be stable again, another electron from the 

M-shell fills this gap but releases a photon of energy equal 

to the difference between the two energy levels. This photon 

may knock off another electron called Auger electron 

 

 
 

Figure 9.2. Depiction of photoelectric effect in a free atom. 
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9.3. Compton scattering 
 

Compton scattering replaces the photoelectric effect as 

the energy of the radiation increases. In this process the 

incident photon is scattered inelastically by one of the free 

or loosely bound atomic electrons which are ejected from its 

atom. The photon moves off at an angle with its original 

direction and with less energy than it had initially. The 

change of direction serves to remove the photon from the 

incident γ-ray beam. 

The main features of Compton scattering that were first 

discovered and studied by Compton in 1923 will be 

discussed. The theoretical treatment of the Compton Effect 

involves Einstein's quantum theory of light as well as some 

of the ideas of relativity theory.  

During a scattering experiment, he found out that the 

wavelength of the scattered light was different (longer 

wavelength) from that of the incident light. He successfully 

explained this phenomenon by considering light to consist of 

quantized wave packets or photons.  

To account for the presence of the scattered component 

and the amount of the scatter, Compton assumed that the 

scattering process could be treated as an elastic collision 

between a photon of energy hυ0 and a free electron, and that 

in this collision, energy and momentum are conserved.     

Fig. 9.3 shows this process for a bound electron where some 

of the energy of the incident photon goes into knocking the 

orbital electron out of its orbit. We may recall that the 

binding energies of low Z elements are on the order of a few 

hundred eV, while the γ-ray sources used in laboratories 

have energies in the range of hundreds of keV. Therefore the 

bound electron can be considered almost free and at rest 

with respect to incident photons. In general, for orbital 
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electrons, the Compton Effect is more probable than 

photoelectric effect if the energy of the incident photon is 

higher than the binding energy of the innermost electron in 

the target atom.  

 

 
 

Figure 9.3. Compton scattering of a photon having energy 

hν0= hc/λ0 from a bound electron. 

 

In order for that momentum to be conserved, the electron 

which scatters the photon must recoil with a momentum 

equal to the vector difference between that of the incident 

and that of the scattered photon, as in the schematic diagram 

Fig. 9.4. The energy of the recoiling electron is taken from 

that of the primary photon, leaving a scattered photon which 

has less energy and hence a lower frequency, or longer 

wavelength than that of the incident photon. The relativistic 

kinetic energy of the electron must be used because the 

velocity of the electron may be great enough for relativistic 

effect to be significant. The requirement that momentum be 
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conserved gives two equations, one for the x-component of 

the momentum, and one for the y-component.  

 

 
 

Figure 9.4. A schematic diagram of the Compton scattering. 

 

The x-component of the momentum, see Fig. 9.4, is: 
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The y-component of the momentum is: 

 











sin
1

sin0

sinsin0

2

0






mh

or

PP e

                                 9.7 

 



348 

 

Application of the conservation of energy to the scattering 

process: 

2

2
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TEEE ee

                            9.8 

 

where we have used the energy-wavelength relation            

Eγ = hc/λ for initial, Eγ0 and final Eγ γ energies, respectively, 

and m0c
2
 = Ee0 for the electron. 

Now, rearranging and squaring of Eq. 9.6 and Eq. 9.7, 

and combining with Eq. 9.8, the required relation of the 

difference in wavelength ∆λ between the scattered and 

incident photons can be written as: 

  cos1
0

0 
cm

h
                                      9.9 

Inserting the values of constants, h =6.624×10
-27

erg.sec,     

m = 0.9107×10
-27

g and c = 3×10
10

cm/sec, then: 

 

 cm cos1100243.0 8
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             9.10 

 

In terms of incident and scattered photon energies, Eq. 9.9 

can be written as: 
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This relation shows that energy of the scattered photon 

depends not only on the incident photon energy but also on 
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the scattering angle. In other words, the scattering process is 

in no way isotropic.  

It is worthwhile to see the dependence of scattered 

photon energy on three extreme angles: 0
0
, 90

0
, and 180

0
. 

 

1. At θ = 0
0
: In this case, cos θ = 1 and therefore Eq. 9.11 

gives Eγ = Eγmax = Eγ0. That is, the scattered photon 

continues in the same direction as the incident photon 

and carries with it all of its energy. Of course, this 

implies that the photon has not actually interacted with 

the electron and therefore this should not be regarded as a 

scattering process at all. However, it should be noted that 

this case gives us the upper bound of the scattered photon 

energy. 

2. At θ = 90
0
: In this situation, the incident photon flies 

away at right angles to its original direction of motion 

after interacting with the electron. We can find the 

energy it carries away by the scattered photon and the 

change in photon‟s wavelength as: 
1
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3. At θ = 180
0
: It is obvious from Eq. 9.11 that a photon 

scattered at θ = 180
0
 will carry the minimum possible 

energy called backscattering (since 1−cosθ=2 is 

maximum). In this case: 
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To obtain a numerical result independent of the incident 

photon energy, let us assume that the incident photon 
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energy is much higher than half the electron rest mass 

energy, such as Eγ >> m0c
2
/2. There is nothing magic 

about half the electron rest mass energy. It has been 

chosen because we want to eliminate the term containing 

m0c
2
/2Eγ0. In this situation, the above equation is reduced 

to   keV
cm

E 255
2

2

0

min  . This is a very interesting result 

because it tells us that the electron will carry the 

maximum energy it could at any angle. This process 

resembles the simple head-on collision of two point 

masses in which the incident body completely reverses 

its motion and the target body starts moving forward. To 

determine the energy of the recoiling electron, we assume 

that most of the energy of the incident photon is 

distributed between the scattered photon and the recoil 

electron with kinetic energy Te= Eγ0 - Eγ: 
 

2

0

0

0
)cos1(1

)cos1(

cm

E
whereETe



 








             9.12 

 

Hence the maximum energy of the scattered electron can 

be calculated from the above equation: 

               keVETe 2550max   . 

This implies that in a γ-ray spectroscopy experiment, one 

should see a peak at the energy Eγ − 255 keV. Such a 

peak is actually observed and is so prominent that it has 

gotten a name of its own; the Compton edge (see        

Fig. 9.5). A consequence of this observation is that our 

assumption that even though the scattering is inelastic, 

the energy imparted to the atom is not significantly high. 
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Figure 9.5: Typical γ-ray spectrum obtained by a detector 

surrounded by heavy shielding (such as lead). 

 

The discussion so far refers only to a single Compton 

scattering process. In order to treat the contribution of the 

Compton effect to the attenuation of a beam of γ-rays in 

matter, it is necessary to calculate the probability that such a 

scattering process will occur. This probability was 

calculated on the basis of relativistic quantum mechanics by 

Klein and Nishina. Although the details of the theory are 

complicated and beyond the scope of this book, the results 

may be expressed in straightforward formulas with which 

calculations can be made quite easily. 

We will simply quote the formula of the dependence of 

the Compton scattering cross section ζ on the scattering 

angle θ and discuss some of its implications. The differential 

cross section for Compton scattering can be fairly accurately 

written as: 
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The behavior of dζ/dΩ is shown in Fig. 9.6. Notice that 

at any given α, the angular distribution is peaked in the 

forward direction. As α increase, the forward peaking 

becomes more pronounced. The deviation from Thomson 

scattering is largest at large scattering angles; even at          

Eγ =hν ~ 0.1 MeV the assumption of Thomson scattering is 

not valid. In practice, the Klein-Nishina cross section has 

been found to be in excellent agreement with experiments at 

least to hν = 10 mec
2
. 

 

 

Figure 9.6. Angular distribution of Compton scattering at 

various incident energies Eγ. All curves are normalized at 0
o
 

 

To find the total cross section per electron for Compton 

scattering
e

c , one can integrate Eq. 9.13 over solid angles. 

A formula was obtained for the total cross section per 
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electron for the removal of photons from the incident beam 

by scattering:  
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Where, again, α =Eγ0/m0c
2
 and ζTh is Thompson cross 

section given by Eq. 9.5. When 
e

c is multiplied by the 

number of electrons per unit volume nZ ≈ ρNA (Z /A), the 

result is the Compton absorption coefficient (cross section) ζ 

(cm
-1

): 
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The total Compton coefficient ζ is actually a measure of 

the probability that a photon is scattered out of the beam per 

centimeter of absorber ζs. Since the beam is initially 

homogeneous, ζ is also a measure of the total amount of 

energy removed (absorbed by the recoil electrons) from the 

beam per centimeter of absorber ζa: 

 

ζ = ζs + ζa                                                                 9.16 

       

The amount of energy carried off by the scattered 

photons may be expressed in terms of the Compton 

scattering cross section per electron for the energy of the 

scattered photon
e

s , which is given by: 
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Therefore, the Compton scattering cross section per 

electron for the energy absorbed by the recoil electron
e

a  

can be found by subtraction Eq. 9.17 from Eq. 9.14, since 

the coefficient
e

c is simply the sum of the two: 
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In analogy with Eq. 9.15, we can write: 
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Eqs. 9.14 and 9.17 show that the Compton scattering per 

electron is independent of Z, so that the scattering per atom 

is proportional to Z. The mass scattering cross section is 

then given by: 
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For light elements, Z/A is closely equal to 1/2, so that for 

a given photon energy, ζ/ρ is practically constant for these 

elements. The total scattering coefficient per electron 
e

c

decreases with increasing photon energy. The decrease is 

quite slow at low values of the energy and for energies 

above 0.5 MeV, 
e

c is roughly proportional to (Eγ)
-1

. Thus 

Compton scattering decreases much more slowly with 

increasing energy than does photoelectric absorption; even 
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in heavy elements, it is the most important process in the 

energy range from about 0.6 to 2.5 MeV. 

 

9.4. Pair Production  
 

This process, which has no analogy in classical physics, 

may be accepted as a strictly experimental phenomenon.  

In this process, which can occur only when the energy of 

the incident γ exceeds 1.02 MeV, the photon is absorbed in 

the vicinity of the nucleus, a particle–antiparticle pair: a 

negative electron and a positive electron or positron is 

produced, and the atom is left in an excited state. Since 

photon has no rest mass, while both the electron and the 

positron do, we can say that this process converts energy 

into mass according to Einstein‟s mass energy relation E = 

mc
2
. Conservation of energy requires that: 
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Since the rest energy (m0c
2
) of an electron or positron is 0.51 

MeV, pair production is energetically impossible for 

photons below 2m0c
2
 = 1.02 MeV. 

One can show, using hν0 = pc for the photon, that 

momentum is not conserved by the positron and electron if 

Eq. 9.21 is satisfied. However, pair production always takes 

place in the Coulomb field of another particle (usually a 

nucleus) that recoils to conserve momentum. The actual 

threshold energy for the process in the vicinity of a heavy 

nucleus of mass M is given by: 
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02

0.,

12

2
2


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                  9.22 

 

The cross section for this (γ, e
+
e

−
) reaction involving the 

nucleus is κn. Now, since the mass of a nucleus is much 

greater than the mass of an electron (M >> m0), we can 

neglect the second term in the parenthesis on the right hand 

side and get the threshold condition we derived earlier, such 

as:  
 

Eγ, thresh ≥ 2m0c
2
                                                          9.23 

 

Pair production with excitation or ionization of the recoil 

atom can take place at energies that are only slightly higher 

than the threshold. 

The pair production can also occur in the vicinity of 

lighter particles, such as electrons. The process in the 

vicinity of an electron is, generally, referred to as triplet pair 

production and can be written as: 

 

γ + e → e + e
+
 + e                                                    9.24 

 

The cross section for this reaction, denoted κe, does not 

become appreciable until the incident photon energy exceeds 

4m0c
2
 = 2.04 MeV, the threshold for pair production in 

which a free electron (rather than a nucleus) recoils to 

conserve momentum. Since there are only a few radioactive 

sources that emit γ-rays having energies higher than this 

threshold, this process is not of much significance in usual 

radiation measurements. 
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The cross section for both processes is κ = κn + κe. The 

energy dependence of κ starts from zero for photon energies 

less than 1.02 MeV and increases slowly at first, then more 

rapidly. It is proportional to Z
2
, so that for a given photon 

energy, pair formation increases quite rapidly with atomic 

number. This means that for heavy elements, the pair 

production cross section is significantly higher than that for 

lighter elements. The actual cross section can be written as: 

 





























54

1183
ln

9

7
4)/(

3
1

222

Z
Zratomcm e             9.25 

 

A natural question to ask is what happens to the positrons 

that are created in the conversion of photons in matter? 

Because positrons are the antiparticles of electrons, they 

traverse matter after production, much as electrons do, and 

deposit their energies through ionization or through 

bremsstrahlung. Once a positron loses most of its kinetic 

energy, it captures an electron to form a hydrogen-like atom, 

referred to as positronium, where the proton is replaced by a 

positron. Unlike hydrogen, positronium atoms are unstable 

and decay (annihilate) with lifetimes of about 10
-10

 sec to 

form two photons. The process of annihilation produces 

photons of equal energy, back-to-back in the laboratory. To 

conserve momentum-energy, each photon carries away 

exactly 0.511 MeV. Thus, pair annihilation provides a very 

clean signal for detecting positrons, as well as for calibrating 

the low-energy response of detectors. These processes, pair 

absorption and pair annihilation, are shown graphically in 

Fig. 9.7. 
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   Figure 9.7. Schematic diagram of pair production by a 

photon having energy hν> 1.02 MeV in the vicinity of the 

nucleus and the annihilation of the created positron. 

 

9.5. Bulk Behavior of Photons in an Absorber 
 

So long as the different processes of photon interaction 

are not correlated, the total linear attenuation coefficient μ 

for γ -interaction can be taken as the sum of contributions 

from Compton scattering, photoelectric effect, and pair 

production. 

 

µ = η + ζ +κ                                                             9.26 

 

With μ = nζ and n being the number of atoms per cm
3
. 

Since n = NA ρ / A, where NA is Avogadro's number and ρ 

the mass density of the absorber, it is again useful to express 

the interaction in terms of the mass attenuation coefficient   

μ / ρ. As discussed in previous sections, this quantity is 
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essentially independent of the density and physical state of 

the absorber. Recall our observation in the case of charged 

particle interactions that Z/A is approximately constant for 

all elements. Here we see that in the product   (n μ) we get a 

factor of 1/A from n, and we can get a factor of Z from any 

of the three cross sections (η + ζ +κ), so we can also take 

advantage of Z/A being roughly constant in describing 

photon interaction. We can rewrite Eq. 9.1 in terms of mass 

attenuation coefficient: 
 

x

ox eII







                                                   9.27 

 

The quantity μ/ρ (cm
2
.g

−1
) is the mass attenuation 

coefficient. The product ρx (g.cm
-2

), the area density (mass 

per area) of a thickness x of the attenuating material, is also 

called the density-thickness. It is often quoted instead of the 

geometrical thickness x (cm). Each of the components, η, ζ 

and κ can be expressed as mass attenuation coefficients. 

 














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                                                         9.28 
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It should be quite clear by now that the three processes 

we have studied are not equally important for a given region 

of Z and hν. Generally speaking, photoelectric effect is 

important at low energies and high Z, Compton scattering is 

important at intermediate energies ( ~ 1 – 5 MeV) and all Z, 

and pair production dominates at higher energies and high Z. 

This is illustrated in Fig. 9.8. 

We also show several mass attenuation coefficients in 

Figs. 9.9 and 9.10. One should make note of the magnitude 

of the attenuation coefficients, their energy dependence and 

the contribution associated with each process. In comparing 

theory with experiment, the agreement is good to about 3 %, 

for all elements at hν < 10m0c
2
. At higher energies, 

disagreement sets in at high Z (can reach ~ 10% for Pb), 

which is due to the use of Born approximation in the 

calculation of κ. If one corrects this approximation, an 

agreement to within ~ 1% is obtained out to energies            

~ 600 m0c
2
. 
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Figure 9.8. Regions where one of the three                      

γ - interactions dominates over the other two. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.9. The 3 energy transfer processes in air, 

each depends differently on Eγ. 
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Figure 9.10. The 3 energy transfer processes in lead, 

each depends differently on Eγ. 

 
 

 

 

 

 

 

 

 

 



363 

 

Problems 

 

9-1. A narrow beam of 10
8
 photons per second is normally 

incident on a 6 mm aluminum sheet. The beam consists of 

equal numbers of 200 keV photons and 2 MeV photons. 

a- Calculate the number of photons per second of each 

value of energy that are transmitted without interaction 

through the sheet. 

b- Calculate the transmitted intensities for the same two 

photon beams striking a lead sheet of the same 

thickness. 

c- Calculate the atomic cross sections of aluminum and 

lead for the 200 keV and the 2 MeV photons. 

 

9-2. What is the fractional attenuation of a beam of 1 MeV 

photon in 2.5 cm of Pb? 

 

9-3. Prove that a photon of Eγ >1.022 MeV cannot go pair 

production in free space. 

 

9-4. Lead is thought to be a better absorber than aluminum. 

At what gamma ray energy is the mass absorption 

coefficient of lead greater than that of aluminum? Why? 

 

9-5. A narrow beam of 200 keV photons strikes a target 

consisting of a 1.4 cm-thick sheet of aluminum followed by 

a 2 mm-thick sheet of lead. 

a- What fraction of the incident photons penetrates both 

sheets without interacting?  

b- Would there be any difference if the photons came 

from the other direction, entering the lead first and then 

the aluminum? 
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9-6. A 1 MeV photon undergoes Compton scattering 

through angles 0
o
, 90

o
, and 180o. What is the energy of the 

scattered photon in each case? 

 

9-7. An experiment is carried out with monoenergetic 

photons in “good” geometry. The relative count rate of the 

detector is measured with different thicknesses x of tin (Sn) 

used as absorber. The following data are measured: 

x(cm)                       0     0.50    1.0    1.5     2.0     3.0      5.0 

Relative count rate 1.00 0.861 0.735 0.621 0.538 0.399 0.210 

 

a- What is the value of the linear attenuation coefficient? 

b- What is the value of the mass attenuation coefficient? 

c- What is the atomic cross section?  

d- What is the photon energy? 

 

9-8. For gamma rays of energy E, the linear attenuation 

coefficient in material A is twice that in material B. Given 

that 80% of the gamma rays penetrate a given thickness of 

A, what fraction will penetrate the same thickness of B? 

 

9-9. The mass attenuation coefficient of 1 MeV photons in 

aluminum is 0.0065 m
2
.kg

-1
. The density of aluminum is    

2.7 × 10
3
 kg.m

-3
. 

a- What is the linear attenuation coefficient of 1 MeV 

gamma rays in aluminum?  

b- What fraction of incident 1 MeV gamma radiation 

penetrates 30 mm of aluminum? 

 

9-10. The total radiation penetrating to a given depth in a 

material is sometimes greater than that predicted using the 

known attenuation coefficient. This is known as "build-up". 

Use an example to explain what is happening. 
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9-11. What is the mean free path of a 0.1, 1.0, and a 3.0 

MeV photon in water and in NaI? 

 

9-12. How much lead shielding will it take to reduce the 

radiation exposure level to <10 mrem/h 1 foot from a 5 mCi 
60

Co source?   

 

9-13. The mass attenuation coefficients for 10 MeV photons 

in lead are:- 

μ (Pe) = 6 × 10
-5

 m
2
.kg

-1
; μ (C) = 1.2 × 10

-3
 m

2
.kg

-1
;       

     μ (Pp) = 0.005 m
2
.kg

-1
. 

a- Which process of attenuation is dominant for 10 MeV 

photons? 

b- What is the total attenuation coefficient for 10 MeV 

photons?  

c- Which of the mass attenuation coefficients μ (Pe),        

μ (C), μ (Pp), increase and which decrease if the photon 

energy is increased to 20 MeV? 

 

9-14. Suppose you have a sample that contains 

radionuclides that emits 1MeV β-particles and 1MeV γ-rays. 

Device an attenuation technique that would allow you to 

count γ-rays without interference from the β-particles.  
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CHAPTER 10 
 

 

NEUTRON PHYSICS AND 

INTERACTIONS 
(INDIRECT IONIZING RADIATION) 

 

When hearing the word ’nuclear physics’ or 'neutron 

physics' most people will think of two things: nuclear bombs 

and nuclear reactors. Because of these two aspects, nuclear 

physics was probably the part of science with the biggest 

impact on politics in the 20
th

 century, just think of the entire 

cold war. Today’s mainstream nuclear physics research has 

very little to do with bombs and reactors.  

 

10.1. Neutrons Properties 
 

The neutron was the last of the basic atomic constituents 

to be discovered mainly because of their almost identical 

mass to protons and no electrical charge. A British scientist, 

James Chadwick, discovered these particles in 1932. Like 

protons, they are also composite particles made up of three 

quarks. However, they are not as stable outside the nucleus 

(free) as protons and decay within about 15 minutes.  

Neutrons, because they are uncharged heavy particle, 

have properties which make them especially interesting and 

important in contemporary science and technology. The 

many nuclear reactions induced by neutrons are the 

available source of information about the nucleus and have 

produced many new nuclear species. Neutrons do not cause 

ionization. However, they induce radioactivity and 

eventually lead to ionization by charged particles, which are 



367 

 

produced during collisions with atomic nuclei, or via nuclear 

reaction. 

Neutrons have direct uses as research tools and have 

applications in other branches of science, such as chemistry, 

biology and medicine. The most striking use of neutrons is 

in the chain reactions involving fissile materials. The 

opening epoch of nuclear power was in military applications 

(nuclear bombs) and in nuclear power plants where they 

were used to initiate and sustain chain fission reactions 

necessary to create heat and thus generate electricity. 

Another important application of neutrons is also being 

extensively used in radiation therapy to destroy cancerous 

tumor cells in the body.   

The wide uses of neutrons and applications of neutron 

physics depend on knowledge of the properties of neutrons 

and on an understanding of their sources and interactions 

with matter. 

 

10.2. Sources of Neutrons 
 

Neutrons are very valuable particles because of their 

ability to penetrate deeper in matter as compared to charged 

particles. Production of free neutrons is, therefore, of high 

research significance. Neutrons are generated over a wide 

range of energies by a variety of different processes based 

on nuclear reactions. Their main interaction mechanism with 

other particles is through collisions and absorption, releasing 

other detectable particles and/or electromagnetic rays. In this 

section, we will have a look at the most important of the 

neutron sources available today. 
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10.2.1. Isotopic neutron sources 
 

(α, n) nuclear reactions on light elements which led to the 

discovery of the neutron are still used to produce these 

particles. However, it is also possible to generate neutrons 

by bombarding light elements with high energy charged 

particles, such as protons. This nuclear reaction can be 

accomplished by exciting nuclei such that they emit 

neutrons during the process of de-excitation. Fortunately, for 

such a process to occur, it is not always necessary that the 

target particle carries a very high energy. In fact, incident 

particles coming out of radioactive sources or a small 

particle generator are more than sufficient to cause neutron 

emission from some materials. In general, such sources are 

made of a radioactive material acting as the source of 

incident particles mixed in a target material.  

A common example of (α, n) reaction is the plutonium-

beryllium source, which produces neutrons of a continuous 

energy spectrum (neutrons have energies from about 1 MeV 

to 12 MeV) used to provide neutrons to “start” reactors. 

Plutonium-238 emits α-particles of energy around 5.48 MeV 

with a half life of about 87.4 years. One curie of plutonium 

mixed with powdered beryllium yields about 10
6
 n/sec. The 

yield is the number of neutrons per second from 1 gram of 

target at 1 cm from 1 curie of the source. The reaction can 

be represented by the following sequence: 

 

nCC

CBe

UPu







12

6

*13

6

*13

6

9

4

234

92

238

94




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Another common example of an (α , n) neutron source, 

similar to 
238

Pu – Be, is 
241

Am − Be. Americium-241 has a 

half life of 433 years. It decays by α emission with a mean 

energy of 5.48 MeV. This long half life makes it suitable for 

long time storage in laboratories. 

An example of the production of neutrons by bombarding 

lithium target by high energy protons is: 
  

nBeLip  7

4

7

3  

 

In addition, photoneutron sources are used frequently. In 

this process atomic nucleus is disintegrated by high-energy 

photon with an emission of a neutron from the nucleus that 

has been raised to an excited state by the absorption of this 

photon. Neutrons produced by photodisintegration are 

practically monoenergetic. Most of these sources are based 

on the 
9
Be(γ, n)

8
Be and the 

2
H(γ, n)

1
H reactions. The binding 

energy of the last neutron is particularly low in 
9
Be and 

2
H, 

and the (γ, n) reactions have low thresholds, 1.67 MeV for 

the beryllium reaction and 2.23 MeV for the deuterium 

reaction. A common example of such γ-emitting nuclides is 

antimony-124 ( Sb124

51 ). It emits a number of γ-rays, the most 

probable of which has energy of around 603 keV. If these 

photons are then allowed to interact with beryllium nuclei, it 

may result in the emission of a neutron. Antimony-beryllium 

neutron sources are commonly used in laboratories. 

 

10.2.2. Spallation sources 
 

Spallation is a violent reaction in which a target is 

bombarded by very high energy particles (normally from 

high accelerators). The incident particle, such as a proton, 

alpha or light ions, disintegrates the nucleus through 
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inelastic nuclear reactions. The result is the emission of 

protons, neutrons, α-particles, and other light and heavy 

particles. The neutrons produced in such a reaction can be 

extracted and used in experiments. A general spallation 

reaction with a proton as the incident particle can be written 

as: 
 

p + ST → SF1 + SF2 +.... + SFm + (k)n                 10.1 

 

Where p is the accelerated particle, ST is the spallation 

target and SF represents m spallation fragments. The number 

k of neutrons produced in this reaction depends on the type 

of the target and the energy of the incident particle. The 

targets used in spallation sources are generally high Z 

materials such as lead, tungsten, silver or bismuth.  

A big advantage of spallation sources is that they produce 

neutrons with a wide spectrum of energies ranging from a 

few eV to several GeV. Another advantage is their ability to 

generate neutrons continuously or in short pulses. The pulses 

could be as short as a nanosecond. 

 

10.2.3. Fusion sources 
 

We have seen that the plot of binding energy per nucleon 

(section 2.4 and Fig. 2.4) has a maximum at A ≈ 56 (close to 

iron) and slowly decreases for heavier nuclei. For lighter 

nuclei, the decrease is much quicker, so that with the 

exception of magic nuclei, lighter nuclei are less tightly 

bound than medium size nuclei. Thus, in principle, energy 

could be produced by combining (fusing) two light nuclei to 

produce a heavier in an excited state. This nucleus releases 

neutrons and photons to reach its ground state to be more 

tightly bound nucleus. This process as a potential source of 
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power is called nuclear fusion. However, since lighter nuclei 

contain fewer nucleons, the total energy released per fusion 

is smaller than that released in fission. On the other hand, 

since there is an abundance of light and stable nuclei in 

nature, fusion provides an attractive alternative for 

generating power. Fusion is, in fact, the mechanism 

responsible for energy generation in the interior of the sun, 

through the proton-proton cycle and of other stars, through 

carbon or CNO cycle.   

The fusion reaction can therefore be used to produce 

neutrons. To initiate a fusion reaction practically, a fair 

amount of energy must be supplied through some external 

means because the nuclei are repelled by electromagnetic 

force between the protons. This energy can be provided by 

several means, such as through charged particle accelerators. 

These sources are more efficient in terms of neutron yield. 

The main fusion process producing neutrons is called 

Deuterium Cycle. 
 

MeVnHeHH

MeVnpHHH

MeVnHeHH

6.17

0.4

3.3

4

2

3

1

2

1

3

1

3

1

2

1

3

2

2

1

2

1







 

 

Just as for fission, the energy released comes from the 

difference in the binding energies of the initial and final 

states. Thus, fusion offers enormous potential for power 

generation, if the huge practical problems could be 

overcome.  

The first practical problem in obtaining a controlled 

fusion, whether in power production or more generally, has 

its origin in the Coulomb repulsion (coulomb barrier), which 

inhibits two nuclei getting close enough together to fuse. 
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However, for this to happen, the Coulomb barrier between 

the two nuclei has to be overcome. The value of the 

repulsive Coulomb energy is a maximum when the two 

nuclei are just touching, and has the form: 
 

RR

eZZ
VCoul






2

                                                    10.2 

 

where Z and Z' are the atomic numbers of the two nuclei, 

and R and R' are their respective radii. Recalling   Eq.1.28, 

we can rewrite this as: 
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where A and A' are the nucleon numbers of the two light 

nuclei and the final expression is obtained by setting A ≈ A' 

≈ 2Z ≈ 2Z'. Thus, the Coulomb barrier between two nuclei of 

A ≈ 8 is about 4 MeV. Consequently, for fusion to take 

place, we must provide kinetic energies of the order of a few 

MeV to overcome the Coulomb barrier (clearly, the exact 

value depends on the specific nuclear masses and charges). 

It would, therefore, appear that a natural way to achieve 

fusion is by colliding two energetic beams of light nuclei. In 

such a process, however, most of the nuclei get scattered 

elastically and, as a result, this turns out to be an inefficient 

way of inducing fusion.  
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An alternative and Practical method is to heat a confined 

mixture of the nuclei to supply enough thermal energy to 

overcome the Coulomb barrier as in thermonuclear bomb. 

The temperature necessary may be estimated from the 

relation E=kBT, where kB is Boltzmann constant. For energy 

of 4 MeV, this implies a temperature of about 10
10

 K.  

It is also the major hurdle that the nuclei must be 

confined close enough to allow them to fuse (density            

n ~ 2−3 x 10
20

 m
−3

) and the confinement must be sufficiently 

long (t ~ 1−2 sec). To date, no device has yet succeeded in 

achieving such conditions. Experience with fission power 

reactors suggests that it will probably take decades of further 

technical development before fusion power becomes a 

practical reality. 

 

10.2.4. Radioactive Sources  

 

There are no known naturally occurring isotopes that 

emit significant number of neutrons. Perhaps the most 

extensively used sources of neutrons are some artificial 

heavy nuclei of atomic number greater than 92, called 

transuranium elements. Among them, californium-252 was 

found to have two decay modes: α-emission (96.9%) and 

spontaneous fission (3.1%). A spontaneous fission is a 

common decay mode resulting in the emission of neutrons. 

During this process, a heavy nucleus spontaneously splits 

into two lighter nuclides called fission fragments and emits 

several neutrons. The general equation for spontaneous 

fission process cannot be written as there are a number of 

modes in which a nucleus may fission. That is, there is 

generally a whole spectrum of nuclides in which a decaying 

nucleus may split. Also, the number of neutrons emitted is 

variable and depends on the particular mode of decay, 
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normally 2–4 neutrons per fission. As an example, 

californium-252 may result 4 neutrons: 

 

nNdSrCf 4154

60

94

38

252

98   

 

1 mg of 
252

Cf emits around 2.3 × 10
9
 neutrons per second 

with average neutron energy of 2.1 MeV. It also emits a 

large number of γ-ray photons but the intensity is an order of 

magnitude lower than that of the neutrons. It, therefore, does 

not pose much problem for applications requiring a 

moderately clean neutron beam. Table 10.1 lists some of the 

common sources of neutrons and their decay modes. 

 

10.2.5. Neutrons from nuclear reactors 
 

The most powerful sources of neutrons are those 

associated with nuclear reactors. Many neutrons are 

produced in a chain reacting assembly of a fissile material 

and a moderator. The neutrons resulting from the induced 

fission of uranium atoms are fast and are slowed down to 

thermal energy by scattering process in the moderator (the 

details of the fission process will be given in the next 

section). Although most of these neutrons are used up to 

induce more fission reactions, still a large number of 

neutrons manage to escape the nuclear core.  

For some purposes, as for the production of artificial 

radionuclides or for any nuclear experimental research, the 

mixture of neutrons with different energies can be used. 

These neutrons can be obtained by designing of suitable 

columns made of metal (vertical or horizontal columns) 

extended from outside the reactor to definite locations of the 

reactor core or the moderator to get a desired neutron flux 
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and desired neutron energy. These neutrons inside channel 

can be used to bombard targets exposed there or they can be 

allowed to escape through a hole, forming a beam of 

neutrons which can be used outside the channel. 

 

Table 10.1  
Common neutron sources and their decay modes. 
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10.3. Interaction of neutrons with matter  
 

As we have already mentioned, neutrons are in most 

respects very similar to protons. They are the constituents of 

nuclei, and have essentially the same mass, same nucleon 

number and spin as protons. They are, however, electrically 

neutral, and consequently, just like photons, cannot interact 

directly through the Coulomb force. Although neutrons have 

small magnetic dipole moments, these do not provide 

substantial interactions in media. This enables them to move 

swiftly through large open atomic spaces without interacting 

with atoms. However, if they pass near the nuclei, they 

encounter strong nuclear force. In such a situation, they can 

interact with the nuclei in different ways depending on their 

energy.  

Neutron-nuclei reactions, formulated in a manner very 

similar to that given in Chapter 3, are generally 

accompanied by either absorption or emission of energy 

calculated by the theory of relativity, Q=∆mc
2
, where ∆m is 

the mass difference between the interacting particles before 

and after the collision. Obviously, nuclear reaction is 

exothermic, i.e., the reaction Q-value >0.  

There are a wide variety of possible neutron-nuclei 

reactions. The reactions of most interest especially in the 

analysis of a nuclear fission reactor include: 

 

1. Nuclear fission (n, fission): 
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2. Scattering ),( nn or ),( nn  : 
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3. Radiative capture (n, γ):  
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4. Transmutation: 
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The importance of the fission reaction to nuclear reactor 

operation is obvious. Both radiative capture and scattering 

are also extremely important since they influence the 

neutron economy and hence the controlling chain reaction. 

We will discuss each process more quantitatively. 

 

10.3.1. Nuclear fission   
 

Nuclear fission is a process in which an unstable heavy 

nucleus splits up into two lighter nuclides and emits 

neutrons. Two types of fission reactions are possible: 

spontaneous fission and induced fission. We saw earlier that 

spontaneous fission occurs in some radionuclides, at least 

one of which, i.e., californium-252, occurs naturally. These 

radionuclides are extensively used as neutron sources. 
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Induced fission, caused by the absorption of a neutron, 

occurs with certain nuclei of high atomic (or mass) number, 

called fissionable nuclides. With increasing atomic number, 

the electrostatic repulsion between protons varies as Z
2
, and 

hence becomes an important contributory factor. When 

fission takes place, the excited compound nucleus formed 

after absorption of a neutron breaks up into two lighter 

nuclei, called fission fragments. The two fission fragments 

generally have unequal masses with mass numbers in the 

range of roughly 72 to 161, especially if the neutron is of 

low kinetic energy (slow neutron) but in a sample of many 

fissionable atoms, some of the fragments are always of equal 

mass. Most of these fission fragments are unstable and go 

through a series of nuclear decays before transforming into 

stable elements (see Fig. 10.1 for an example of uranium-

233, uranium-235, and plutonium-239 fission fragments 

spectrum). 

 

- Neutrons released: 

 

Number of neutrons (called prompt neutrons) released 

immediately (the fission takes place in a time of the order     

t = ћ/Γ≈ 10
-14

sec, since the measured widths of low-energy 

resonance of fissionable nuclides is about Γ ≈ 0.1 eV, refer 

to section 3.3.3) from those fission fragments, each of which 

has too many neutrons for stability, as well as the excess 

(excitation) energy of about 6 to 8 MeV required for the 

expulsion of a neutron, refer to Fig. 2.1.  

The reaction can be written as in Eq.10.4, where X 

represents fissionable material (such as uranium-235), υ is 

the number of neutron released per fission (normally 

between 2 to 3), n is the neutron, and FF1 and FF2 are the 

two fission fragments. 
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Figure 10.1. Fission yield as a function of mass number 

of the fission products. 

 

- Fissionable nuclides: 

 

Only three heavy nuclides of odd mass number, having 

sufficient stability to permit storage for a long time, namely, 

uranium-233, uranium-235, plotonium-239, are fissionable 

by neutrons of all energies, from thermal values ( 0.25 eV, 

or less) to millions of electron volts. They are referred to as 

fissile nuclides. Of these nuclides, uranium-235 is the only 

one which occurs in nature; the other two are produced 

artificially from thorium-232 and uranium-238, respectively, 

by neutron capture followed by two stages of radioactive 

decay. Moreover, since thorium-232 and uranium-238 can 
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be converted into the fissile species, both of them are called 

fertile nuclides.    

As an example, let us have a look at how uranium-235 

fissions. The following equation shows the process for two 

of the most probable fission fragments:  
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where U236

92 , is an unstable compound isotope of Un 235

92  that 

eventually breaks up in fragments and releases 3 neutrons. 

These two fission fragments are unstable and go through the 

following β-decays: 
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or, the process can be written globally as: 

 

enZrBaUn  44396
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These fission fragments are themselves unstable and go 

through a series of β-decays till they transmute into stable 

elements. Iodine-137 eventually decays into xenon-137 

which, in turn, decays to cesium-137, then to barium-137 

(stable), while yttrium-96 decays into zirconium-96 (stable). 

Because of their high β-yields, these fission fragments and 

their daughters are regarded as extremely hazardous and 

special precautions must be taken while handling them. 
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- Fission energy: 

The amount of energy released when a nucleus 

undergoes fission can be calculated by determining the net 

decrease in mass from the known isotopic masses, and 

utilizing the Einstein mass-energy relation. A simple, but 

instructive although less accurate, alternative procedure is 

by disregarding the neutrons involved, since they have a 

negligible effect on the present calculation. The fission 

reaction may be represented approximately by: 

 

Uranium-235 → FF1 + FF2 + energy. 

 

In uranium-235, the mean binding energy per nucleon is 

about 7.6 MeV (refer to section 2.4-4), so that it is possible 

to write: 

92p + 143n → uranium-235 + (235×7.6) MeV. 

 

Here, p and n represent protons and neutrons, respectively. 

The mass numbers of the two fission product nuclei, FF1 

and FF2, are mostly in the range of roughly 95 to 140 (as 

shown in Fig. 10.1), where the binding energy per nucleon is 

about 8.5 MeV, taking tin-120 as an average; hence: 

92p + 143n → FF1 + FF2 + (235×8.5) MeV.  

 

Upon subtracting the above two binding energy expressions, 

the result is: 

 

Uranium-235 → FF1 + FF2 + 210 MeV. 

  

The fission of a single uranium-235 (or similar) nucleus is 

thus accompanied by the release of about 200 MeV        

(32×10
-12

 J) of energy. This may be compared with about 4 

eV (6.4×10
-19

 J) released by the combustion of an atom of 
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carbon-12. Now, one kilogram of any element contains 

NA×10 
3
/A atoms, where NA is Avogadro's number, and one 

kilogram of 
235

U contains, therefore, about 6.02×10
26

/235      

≈ 2.6×10
24

 atoms. Accordingly the complete fission of one 

kg of 
235

U can yield a total energy of: 

32×10
-12

 (J/atom) × 2.6×10
24

 (atoms) ≈ 8.2×10
13

 J 

Since 1 J is equivalent to 1 watt-second (W.sec) or equal 

to 1.16×10
-11

 megawatt-days (MW.d), the 8.2×10
13

 J 

produced by the complete fission of 1kg of fissile material is 

equivalent to (8.2×10
13

)(1.16×10
-11

) = 951 MW.d. A rough 

approximation is that the fission of 1.08 kg of fissile 

material will produce 1000 MW.d of thermal energy. 

Consequently, 1 kg of uranium-235 will produce energy 

equivalent to combustion of about 2700 metric tons of coal 

(3.0×10
4
 kJ/kg, 1.3×10

4
 Btu/lb).   

The analysis of Eq.10.8 shows that the most of the 

released energy is contained in the initial kinetic energies of 

the two fission fragments. The kinetic energy of each heavy 

fragment at the time of fragmentation is of the order of 75 

MeV, with initial velocities of roughly 10
7
 m.sec

−1
. Given 

their large masses, their ranges are very small, about 10
−6

 m. 

The stopping process transforms the kinetic energy to 

thermal energy. 

On average, the various components take the following 

energies: 

Kinetic energy of fragments          165 ± 5    MeV 

Energy of prompt photons               7 ± 1    MeV 

Kinetic energy of neutrons                5 ± 0.5 MeV 

Energy of β decay electrons              7 ± 1    MeV 

Energy of β decay antineutrinos     10          MeV 

In addition to energy of photons      6 ± 1    MeV 

Total                                             200 ± 6    MeV 
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Of the ~ 200MeV, only 190 ± 6 MeV are useful, since 

the neutrinos escape and do not heat the medium.  

The neutrons produced will maintain chain reactions in 

induced fission processes. For 
236

U (i.e. for the fission of 
235

U induced by a neutron), the mean number of produced 

neutrons is υ = 2.47.  

The energy distribution of these neutrons is peaked 

around En = 0.7 MeV. The mean energy is <En> ~ 2MeV. 

 

- Fission mechanism, fission barrier: 

 

The complexity of fission seems out of reach of a 

detailed theoretical description. However, as early as 1939, 

the liquid droplet model of Bohr and Wheeler gave a good 

qualitative description (see section 7.3). 

The process starts as a compound nucleus (more or less 

spherical) formed from the absorption of a neutron by a 

target nucleus Fig. 10.2, A. Let us follow the potential 

energy of the system as a function of variation of the 

distance r between the two fragments FF1 and FF2, as 

illustrated in Fig. 10.2.  

The excitation energy of the compound nucleus will be 

equal to the binding energy of the neutron plus any kinetic 

energy the neutron may have before its capture. As a result 

of this excess energy, the compound nucleus may be 

considered to undergo a series of oscillations, in the course 

of which it passes through a phase similar to Fig. 10.2, B, 

where r increases, the nucleus becomes deformed, its 

surface area increases compared to the initial shape. 

Therefore, this deformation increases the surface tension 

energy. On the other hand, the increase in the distance FF1 

−FF2 means a decrease of the Coulomb repulsion energy 

between FF1 and FF2. There is a competition between the 
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nuclear forces and the Coulomb repulsion. At some point, as 

r varies between r0 (initial shape of the nucleus) and infinity 

(separated fragments FF1 and FF2, Fig 10.2, D), the 

potential energy of the system has a maximum value.  

In other words, there is a potential barrier, called the 

fission barrier that must be crossed in order for the process 

to permit the compound nuclei to deform into the state C of 

Fig. 10.2. One calls activation energy EA (also called critical 

energy), the difference between the maximum of the barrier 

and the energy of the initial nucleus in its ground state. For 

nuclei with A ~ 240, this energy turns out to be of the order 

of 6 MeV.  

In order for the compound nucleus to decay by 

spontaneous fission, the barrier must be crossed by the 

quantum tunnel effect. To get an idea of the factors that 

determine the difficulty of tunneling through the barrier, it is 

interesting to compare the surface term and Coulomb term 

energies of a spherical nucleus as predicted by the Bethe-

Weizsäcker semi-empirical mass Eqs. 7.16, 7.23, and 7.33: 
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The activation energy EA for fission should decrease as 

the value of Z
2
/A increases. A qualitative argument leading 

to this conclusion is that repulsion between the nucleons, 

which favors fission, varies as Z
2
, (representing Coulomb 

energy) whereas the attraction is approximately proportional 

to A (as surface energy), so that fission should occur more 

easily as Z
2
/A increases. Accordingly, nuclei with Z

2
/A < 25 

would be expected to have large barriers so that neutrons (or 

other particles) of very high energy would be required to 
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cause fission. But for nuclei with Z
2
/A > 25, where the 

Coulomb energy dominates the surface energy, the EA is 

decreased in such a way as to have very small barriers of 

about 6 MeV or less. In fact, this is of the order of 

magnitude of the binding energy of a neutron and hence of 

the excitation energy that will accompany the capture of a 

low-energy neutron. 

 

 
Figure 10.2. Liquid drop model of fission and variation of 

the energy of a deformed nucleus as a function of the 

distortion stages. 

 

10.3.2. Scattering (n, n) or (n, n′) 
 

In scattering reaction of neutron with atomic nuclei, the 

final result is merely an exchange of energy between the two 

colliding particles, and a neutron remains free after the 

interaction. As mentioned before, neutrons are generated 

over a wide range of kinetic energies, in the MeV range, and 
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so they are called fast neutrons. However, after a sufficient 

number of scattering collisions with various nuclei of the 

medium, the speed of a neutron is reduced to such an extent 

that it has approximately the same average kinetic energy as 

the atoms or molecules of the scattering medium. The 

energy depends on the temperature of the medium, and so it 

is called thermal energy. Neutrons whose energies have 

been reduced to this extent are called thermal neutrons. At 

ordinary temperature, the average energy of such neutrons is 

less than 0.04 eV. A typical grouping of neutron energies is: 
 

• Thermal: En < 1 eV (0.025 eV) 

• Epithermal: 1 eV < En < 10 keV  

• Fast: En > 10 keV  
  
The ways of scattering of neutrons depend mainly on 

their energy.  

 

- Elastic scattering (n, n): 

 

Elastic scattering is the principal mode of interaction of 

neutrons with atomic nuclei. In this process, the target 

nucleus remains in the same state after interaction. The      

(n, n) reaction is written as the first formula of Eq.10.5. 

Elastic scattering is possible with all nuclei, free or bound, 

and neutrons of all energies.  

The elastic scattering process of neutrons with nuclei can 

occur in two different modes: potential elastic and resonance 

elastic.  

1. Potential elastic scattering: the one of major interest in 

nuclear reactor systems. It occurs with neutrons having 

energies up to a few MeV and for nuclei of low mass 

number. Potential scattering refers to the process in 

which the neutron is acted on by the short range nuclear 
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forces of the nucleus and as a result, it scatters without 

touching the particles, in other words, there is no 

compound nucleus formation.  

2. Resonance elastic scattering: In the resonance mode, also 

called compound nucleus scattering, a neutron with the 

right amount of energy is absorbed by the nucleus, 

forming a compound nucleus, with the subsequent 

emission of another neutron leaving the target nucleus in 

its ground state but usually with a different (larger) 

kinetic energy such that the kinetic energy of the system 

is conserved.  

As a general rule in situations of present interest, elastic 

scattering can be treated as a "billiard ball" type of collision. 

The behavior can then be analyzed by means of the familiar 

laws of classical mechanics, based on the principles of the 

conservation of kinetic energy and of momentum (see 

Chapter 3).  

The neutron elastic cross section will be discussed later. 

 

- Inelastic Scattering (n, n′): 

 

Unlike elastic scattering, the inelastic scattering leaves 

the target nucleus in an excited state. The reaction is written 

as given by the last two formulas in Eq.10.5. 

In such a process, the incoming neutron is absorbed by 

the nucleus forming an excited compound nucleus. The 

compound nucleus is unstable and quickly emits a neutron 

of lower kinetic energy, leaving the target nucleus in an 

excited state. In other words, in an inelastic scattering 

collision, some (or all) of the kinetic energy of the neutron is 

converted into excitation (internal) energy of the target 

nucleus. This excess energy is subsequently emitted as one 

or more photons of gamma radiation, i.e., the excited 
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nucleus goes through one or more γ-decays to return to the 

ground state. Therefore, for inelastic scattering to occur, the 

initial kinetic energy of the incident neutron must exceed the 

minimum excitation energy of the target nucleus which 

depends on mass number. 

For elements of low mass number, the excitation energy 

of even the first (lowest) excited state above the ground state 

is large, of the order MeV. Hence, only neutrons with kinetic 

energy exceeding several MeV can be inelastically scattered 

as a result of nuclear excitation. For elements of moderate 

and high mass number, the minimum excitation energy will 

be lower, usually ranging from ( ~ 0.1 MeV to less than     1 

MeV). Magic nuclides are exceptional in this respect, as 

discussed in Chapter 7. 

 

10.3.3. Radiative capture 
 

Radiative capture is a very common reaction involving 

neutrons. In such a reaction, a nucleus absorbs the neutron 

forming a compound nucleus which is evidently raised to 

one of its excited states. To return to stable state, the nucleus 

emits γ-ray photon. In this case, no transmutation occurs; 

however, the isotopic form of the element changes due to the 

increase in the number of neutrons. The reaction is 

represented by Eq.10.6 or A(n, γ)A + 1. 

Radiative capture has been observed with a great many 

elements, particularly the heavier ones. In most cases, the 

isotopes formed by the capture of a neutron have been found 

to be radioactive, so (n, γ) reaction is generally used to 

produce radioisotopes in a so-called activation analysis, 

mainly in nuclear reactors, such as cobalt-60:  
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Another typical case is gold-198: 
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10.3.4. Transmutation 
 

It is a reaction in which an element changes into another 

one. Neutrons of all energies are capable of producing 

transmutations. In one type of reaction, (n, α) reaction, the 

capture of a slow neutron results in the emission of an alpha 

particle as in Eq.10.7. Two such cases that have been studied 

extensively are:  
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The (n, α) reaction with boron-10 is widely used in 

control rods of nuclear reactors as neutrons absorber and in 

neutron detectors, particularly in ionization chamber work. 

When fast neutrons are captured by heavier nuclei, 

resulting in the emission of an alpha particle, the product 

nucleus is usually radioactive. Some typical reactions are: 
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The capture of a neutron may sometimes result in the 

emission of a proton by the compound nucleus; see  Eq.10.7. 

This (n, p) process has been observed with slow neutrons in 

the case of nitrogen-14 in the reaction: 
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The above equation is assumed to be the source of the 
12

C found in nature. This reaction undoubtedly takes place in 

the atmosphere where nitrogen nuclei are bombarded by 

neutrons produced by the interaction of cosmic rays with 

other particles in the atmosphere. 

Other (n, p) reactions with fast neutrons have usually 

resulted in the production of nuclei that are radioactive, 

emitting beta particles. For example: 
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The above reactions have several interesting 

consequences. It will be noticed that the bombarded nucleus 

and the final stable nucleus are identical, whereas the 

incident neutron has been transformed, apparently, into a 

proton, an electron and an antineutrino. If the mass of the 

intermediate radioactive nucleus-for example, 
32

P-is equal to 

the mass of the initial 
32

S, the energy available for the 

disintegration must come from the mass difference between 

a neutron and a hydrogen atom plus the initial energy of the 

neutron. If slow neutrons are used as bombarding particles, 

the energy available is equivalent to 0.000842 u or 0.784 

MeV. Now the end point energy of the beta-ray spectrum is 

equal to the disintegration energy. If this end-point energy is 

less than 0.784 MeV, slow neutrons will be effective in 

producing the above reaction, as in the case of 
14

N. But if the 

end-point energy exceeds 0.784 MeV, the additional energy 

must come from the kinetic energy of the incident neutrons; 

hence only fast neutrons can be effective in producing this 

reaction. For example, the end point energy of the beta-ray 

spectrum from 
32

P is 1.7 MeV; hence only fast neutrons 

bombarding 
32

S will be effective in producing this reaction, 

Eq.10.16. This reaction can then be used to differentiate 

between slow and fast neutrons. 

Another interesting conclusion is that if the mass of the 

nucleus formed in an (n, p) reaction exceeds the mass of the 

bombarded nucleus by more than 0.000842 u, only fast 

neutrons will be effective in producing this reaction. 

 

10.4. Neutron Cross Section 
  

The probability that a neutron-nucleus reaction will occur 

is characterized by a quantity called a nuclear cross section. 

The empirical data in section 8.2 showed in Eq. 8.3, 
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xnN

N

o

i


  , that the nuclear reaction cross section and No 

are the number of a monoenergetic beam of free neutrons 

incident on the target containing Nt nuclei. This can be 

written as:   

 

 Nt = n×A×δx                                                         10.17 

 

where n is the number of nuclei per unit volume, δx is the 

target thickness and Ni is the number of neutrons that are lost 

due to the interaction with the target nuclei. 

In this case, we would expect that the rate of neutron-

nuclear reactions, Rate=Ni /A (reaction/cm
2
sec), in the target 

will be proportional to both the incident neutron beam 

intensity (neutron flux) I=No/A (in units of number of 

neutrons/cm
2
.sec) and the number of target atoms per unit 

surface area Ns=Nt /A=n× δx (atom/cm
2
). We can write the 

rate at which reactions occur per unit area on the target as: 
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We can define a microscopic cross section for each type 

of neutron-nuclear reaction and each type of nuclide; see 

section 8.2. For example, the appropriate cross sections 

characterizing the four types of reactions we discussed 

earlier, fission, scattering, radiative capture and 

transmutation, are denoted by ζf, ζs, ζγ, and ζn,α, 

respectively.  

We can also assign separate cross sections to characterize 

elastic scattering ζe in which the target nucleus remains in its 

ground state and inelastic scattering ζin in which the target 

nucleus is left in an excited state. Since cross sections are 
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related to probabilities of various types of reactions, it is 

apparent that: 

 

ζs = ζe + ζin                                                             10.19 

 

The microscopic scattering cross section will describe the 

probability that such a scattering collision occurs. However, 

it provides no information about the change in neutron 

direction or energy that occurs in such a collision. This 

information is very important in a certain type of nuclear 

reactor studies. To characterize it, we introduce the concept 

of the differential scattering cross section. A full 

mathematical detail for the variable characterizing neutron 

direction of motion is given in section 8.2.2, Fig. 8.3, while 

the component characterizing the neutron speed, ζs(Ti→Tf), 

will be given in the next section. 

In a similar sense, we can define the absorption cross 

section characterizing those events in which a nucleus 

absorbs a neutron ζa: 

 

ζa = ζf + ζγ + ζn,α + 
….

                                            10.20 

 

Finally, we can introduce the concept of the total cross 

section ζt characterizing the probability that any type of 

neutron-nuclear reaction will occur. Obviously: 

 

ζt = ζs + ζa                                                              10.21 

  

Accordingly, the macroscopic cross sections (see section 

8.2, ii n ) define the macroscopic cross section for 

any specific reaction as just the microscopic cross section 

for the reaction of interest multiplied by the number density 

n characterizing the material of interest. For example: 
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ff n is the macroscopic fission cross section 

ss n   is the macroscopic scattering cross section 

aa n  is the macroscopic absorption cross section 

tt n   is the total macroscopic cross section 

Notice also that: 
 

ast                                                       10.22 

 

It should be stressed that while one can formally define 

such macroscopic cross sections for specific reactions, our 

earlier discussion of attenuation of the monoenergetic 

radiation beam (charged particle, electromagnetic ray) after 

passing through a thick target slab, given in section 8.2, 

applies to the total macroscopic cross section of neutron 

penetration as well, the concept of macroscopic cross section 

can also be generalized to homogeneous mixtures of 

different nuclides as given in Eq. 8.5. Also we can calculate 

the average distance a neutron travels before interacting with 

a nucleus in the target sample (mean free path) in the same 

manner given in section 8.2.3, tt n /1/1  . 

 

10.5. Analyses of Neutron Cross Sections  
 

There are two aspects involved in the analysis of neutron 

cross sections. The first is the dynamics of nuclear reactions. 

Second is the kinematics of two-body collisions that is the 

application of the laws of conservation of momentum and 

energy to such elastic collisions.  
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10.5.1. Dynamic of nuclear reactions  
 

The dynamic of nuclear reactions is concerned with the 

fundamental physical mechanisms involved in such collision 

events. The two mechanisms of most interest are: 

 First, potential scattering; in this mechanism the neutron 

merely bounces off of the force field of the nucleus without 

actually penetrating the nuclear surface. The neutron scatters 

elastically off the nuclear potential without ever penetrating 

the nucleus itself, very similar to billiard balls. The cross 

section for such a reaction is essentially just the geometrical 

cross section of the nucleus. Potential cross sections are 

characterized by rather flat energy dependence from about 1 

eV up to the MeV range. 

 Second, compound nucleus formation; as discussed in 

section 3.2, compound nucleus formation occurs in many 

neutron-nuclear reactions of interest, including radiative 

capture, fission, inelastic scattering and elastic resonance 

scattering (refer to Eqs. 10.4 to 10.7). The formation of a 

compound nucleus actually corresponds to the so called 

resonance reaction, in which the incident neutron energy 

matches one of the excited energy levels in the compound 

nucleus.  

The energy available for such reaction is the center of 

mass (CM) energy TC= [M/(m+M)]T, where m is the 

neutron mass, M is the nuclear mass, and T is neutron kinetic 

energy in the LAB system. The actual energy of the excited 

level of the compound nucleus Eex is much higher due to the 

additional binding energy of the added neutron Eb. If          

TC + Eb is very close to the excited energy level of the 

compound nucleus XA

Z

1 , one expects that the probability for 

compound nucleus formation will be much larger than if   TC 

+ Eb does not match this energy level. Hence, we expect that 
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the cross sections for such compound nuclear reactions will 

exhibit sharp peaks or resonances at those neutron energies 

T for which this energy matching occurs of the form: 
 

22 )
2
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~

 o

t
ET

A
                                          10.23 

 

where Eo is the energy at which the resonance occurs (that 

is, the energy TC at which TC + Eb match or equal Eex) and Γ 

is the total line width of the resonance that essentially 

characterizes the width of the energy level and the full width 

at half-maximum (FWAM) of the resonance. In nuclear 

physics, these resonances are excited states of nuclei that 

decay rapidly (Γ (eV) = ħ/η) by dissociation or photon-

emission. Where η is the mean lifetime of a neutron in the 

beam and it is equal to the mean free path λ divided by the 

beam velocity v:  
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We have shown this resonance situation schematically 

for neutron capture in 
6
Li, as an example, in Fig. 10.2. The 

first excited state of 
6
Li decays to the ground state via 

photon emission while the higher excited states decay to 
6
Li(n,t)

4
He (t stand for tritium 

3
H). The fourth and higher 

excited states can also decay to 
6
Li(n,n)

6
Li. The fourth 

excited state of the compound nucleus 
7
Li (7.459MeV) 

appears prominently as a resonance in 
6
Li(n,n)

6
Li elastic 

scattering and in the exothermic 
6
Li(n,t)

4
He reaction. The 

resonance is seen at the neutron kinetic energy T ~ 200 keV 

in Fig. 10.3. Neutron elastic scattering, (n,n), has a relatively 

gentle energy dependence while the neutron capture, (n,γ) 
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and 
6
Li(n,t)

4
He have a 1/v dependence at low energy. The 

reaction 
6
Li(n,p)

6
Be has an energy threshold. The fourth 

excited state of 
7
Li (Fig. 10.2) appears as a prominent 

resonance in 
6
Li(n,n)

6
Li elastic scattering and in 

6
Li(n, t)

4
He. 

 

 
 

Figure 10.2. The energy levels of 
7
Li and two dissociated 

states 
6
Li(n,n)

6
Li and 

6
Li(n, t)

4
He. 

 

 
 

Figure 10.3. Neutron reaction cross-sections on 
6
Li. 
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More spectacular examples are the multitude of highly 

excited states of heavy nuclei that have sufficient energies to 

decay by dissociation. The cases of 
236

U and 
239

U are shown 

in Fig. 10.4 where these states appear as resonances in the 

scattering of neutrons on 
235

U and 
238

U. Fig. 10.4 shows the 

neutron-induced fission cross-sections and Radiative capture 

for 
235

U and 
238

U. The fission cross-section on 
238

U has an 

effective threshold of ~ 1.2MeV while the cross-section on 
235

U is proportional, at low energy, to the inverse neutron 

velocity (1/v behavior), as expected for exothermic 

reactions. Both fission and absorption cross-sections have 

resonances in the energy range 1 eV < E < 10 keV. 

In order to see how resonances (i.e. energy levels) come 

about in quantum mechanics, we introduce the description of 

the energy dependence of the absorption cross section by a 

very simple expression known as the Breit-Wigner single-

level resonance formula:  
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Here, Гγ is the radioactive line width essentially 

characterizing the probability that the compound nucleus 

will decay via gamma emission. ζo is the value of the total 

cross section ζt(E) at the resonance energy Eo and can be 

written in terms of the reduced neutron wavelength o at Eo 

as:  
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where 
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Figure 10.4. Neutron-induced fission and radiative 

capture cross-sections for 
235

U and 
238

U as a function of 

the incident neutron energy. 

 

is a statistical spin factor given in terms of the nuclear spin I 

and total angular momentum J. Гn is the neutron line width 

and varies in energy as: 

 

To

nn                                                           10.28 
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It should be noted from the above three equations that 

since resonance absorption is primarily of importance in 

heavy nuclei, one can usually approximate TC~T. Then for 

low neutron energy T<<Eo, the cross section behaves as 

essentially 1/T
1/2

 or 1/v. it is also important to note that such 

absorption cross sections are largest at low energies. 

Nuclear fission cross sections exhibit a resonance 

structure very similar to that characterizing radiative 

capture, since both processes proceed via compound nucleus 

which then decays with the mode relatively independent of 

the formation mechanism. This is certainly the case of 
233

U, 
235

U and 
239

Pu nuclei. 

The elastic scattering is the simplest nuclear interaction 

with the nucleus called potential scattering. Such billiard-

ball collisions characterized by essentially energy 

independent cross section ζp which is of the order of 

magnitude of the geometric cross section of the nucleus for 

low and intermediate neutron energies: 

fmARRp
3

1
2 25.1~,4                                 10.29 

As one finds with most compound nucleus reactions, 

there is again a resonance behavior in the corresponding 

scattering cross section for fast neutrons, as for 
6
Li in       

Fig. 10.3. In such a case, the resonance elastic scattering 

may interfere (in a quantum mechanical sense) with 

potential scattering. The appropriate modification of the 

Breit-Wigner formula to account for scattering interference 

is:  
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Finally, an inelastic scattering is also the process of 

forming a compound nucleus, which then decays by 

reemitting a neutron. However, the final nucleus is left in an 

excited state. Such reactions usually occur only for relatively 

very fast neutrons, say above 10 MeV, since the neutron 

kinetic energy must exceed certain threshold energy in order 

to excite the first excited state of the compound nucleus.   

 

10.5.2. Kinematics of neutron scattering  
 

The kinematics of any two body reaction in the 

laboratory system (LAB) is given in section 3.2.  

The process of neutron scattering can be simplified very 

considerably when analyzed within the center-of-mass (CM) 

coordinate frame. Even though the reader should be familiar 

with introductory courses in mechanics or modern physics, 

we will review such kinematics calculations in brief to be in 

consistent with our attempt to make this presentation as self-

contained as possible. 

The collision event before and after the collision in both 

the LAB and CM coordinate frames are sketched in          

Fig 10.5. Here, lower-case notation corresponds to the 

neutron and upper-case notation to the nucleus, while the 

subscripted L and C refer to LAB and CM frames, 

respectively. 

The velocity of the CM frame is defined by: 
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where, as in section 3.2, we have assumed that the initial 

nucleus velocity VL is zero and that the nucleus-neutron ratio 

M/m is essentially just the nuclear mass number A. 

Fig. 10.5 and Eq.10.31show that the neutron and nucleus 

velocities in the CM frame can be written as: 
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Figure 10.5. Definition of collision coordinates in LAB and 

CM systems. 

 

Then, it is apparent that the total momentum in the CM 

frame is zero, as it must be. 
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We can write the total kinetic energies in the LAB and 

CM frames by computing: 

222
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          10.33 

Where, we introduced the reduced mass μ = Mm/(M+m). 

Hence, we find the important relation between the energy in 

the CM and LAB frames as: 
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Using conservation of momentum and energy, it is easy 

to demonstrate that the magnitudes of the CM velocities do 

not change in the collision, i.e., υ'C = υC and V'C = VC, but 

their velocity vectors are rotated through the CM scattering 

angle θC. This fact allows one to relate the scattering angles 

in the LAB and CM frames. Fig. 10.6 illustrates the velocity 

vectors and scattering angles in these two frames, from 

which we conclude the following useful relation: 
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This relationship is particularly useful since cross 

sections are usually calculated in the CM system, but are 

measured and used in the Lab system. 
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Figure 10.6. Trigonometric relationship between the 

scattering angles in the LAB and CM frames. 

 

If we denote the differential scattering cross sections 

characterizing scattering through angle θL and θC in the LAB 

and CM frames, ζL(θL) and ζC(θC), respectively. We can use: 

 

CCCCMLLLL dd  sin)(sin)(                    10.36 

 

to relate the LAB and CM differential scattering cross 

sections by: 
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 Returning to the vector diagram in Fig. 10.6 and using 

the law of cosines, the following equation can be found: 
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Now, using Eq.10.31 and 10.32 with υ'C = υC, we can find 

the kinetic energy relationship in both frames: 
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where, Tf and Ti are the final (after collision) and initial 

(before collision) neutron energies. Rearranging the final 

equation by introducing a parameter related to the nuclear 

mass number A, the final neutron energy after collision can 

be written as: 

2

1

1

2

cos)1()1(






















 


A

A
where

TT i

c

f





                            10.40 

One can analyze this equation to find that the energy 

transfer from the neutron to the stationary nucleus is directly 

related to the scattering angle in the CM system. The 

neutron energy after collision is always less than the energy 

before collision, except in case of θC=0, the neutron will 

lose no energy (Tf=Ti) which corresponds to no collision at 

all. The maximum energy loss occurs in a backscattering 

θC=180
o
. In this case, Tf=αTi. Hence, the maximum energy 

that a neutron can lose in an elastic scattering collision with 

a stationary nucleus is (1-α)Ti. For example, in scattering 

collisions with hydrogen nuclei (A=1), the neutron could 



406 

 

conceivably lose all of its energy, while in a collision with a 

heavy nucleus, such as 
238

U it could lose at most 2% of its 

incident energy.   

The concept of a differential scattering cross section 

ζ(Ω) describing the probability of neutron direction of 

motion is given in section 8.2.2. Similarly we will now 

proceed to introduce the concept of a cross section that 

characterizes the probability that a neutron is scattered from 

an initial energy Ti to a final energy Tf.  

There is a very simple relationship between the 

differential scattering cross section ζs(Ti→Tf) =dζs(T)/dT, in 

unit cm
2
.eV

-1
, and our earlier definition of the microscopic 

scattering cross section ζs(T). If we recognize that the latter 

quantity is just related to the probability that a neutron of 

incident energy Ti will suffer a scattering collision, 

regardless of the final energy to which it is scattered, it is 

apparent that ζs(Ti) is just the integral of the differential 

scattering cross section ζs(Ti→Tf) over all final energies Ef. 
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Thus far, we have developed the concept of differential 

scattering cross sections that characterize the probability of 

scattering from energy to another or one direction to 

another. By combining these two concepts by double 

differential scattering cross section that characterizes 

scattering from an incident energy Ti, direction Ω to a final 

energy Tf in dT and Ω' in dΩ'. 

 

 ζs(Ti→Tf, Ω→ Ω')=d
2
ζ/dTdΩ                             10.42 
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We can again relate the double differential scattering 

cross section to the differential scattering cross section or 

scattering cross section by integration over energy or angle 

or both: 
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We can go one step further and actually calculate the 

differential scattering cross section ζs(Ti→Tf) depending on 

the energy transfer in CM system. To do so, let us first 

decompose the ζs(Ti→Tf) into two factors: 

 

 )()()( fiisfis TTPTTT                                 10.46 

 

where ζs(Ti) is our earlier scattering cross section and 

P(Ti→Tf) is the scattering probability distribution, 

accordingly we define: 

 

P(Ti→Tf)dTf ≡ probability that a neutron scattering with 

initial energy Ti will emerge with a new Tf 

in the interval Tf to Tf + dTf. 

 

This quantity can be explicitly calculated for the situation 

in which neutrons of moderate energies (T<1MeV) via 

potential scattering from stationary nuclei of low mass 

number A. 
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Eq.10.43 defines the relationship between the neutron 

energy transfer and the scattering angle. Then, the 

probability of scattering through an angle θC into dθC about 

θC is just given by:  

CC

s

CCM

CCC ddP 



 sin2

)(
sin2)(               10.47 

Hence we can equate to the probability of scattering with 

energy Tf. 
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If we differentiate Eq.10.40 with respect to θC: 
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Now, substitute this into Eq.10.48, we find the following 

very important result: 
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where ζCM(θC) is the differential scattering cross section in 

CM system and can be calculated by quantum mechanics 

and the detailed nuclear physics of the interaction. 

Fortunately, we can avoid such considerations since the 

scattering in the CM system is isotropic in most interactions 

(with energy Ti < 10 MeV) and for light nuclei (A about 12), 

do not depend on θC. That is:  
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For heavier nuclei, there will tend to be some mild angular 

dependence of ζCM(θC). 

Then, using Eq.10.51 in Eq.10.50, we find that the 

scattering probability distribution for isotropic elastic 

scattering from stationary nuclei has the form: 
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Again, notice in particular that the probability of scattering 

from an incident energy Ti to a final energy Tf is independent 

of the final energy Tf.  

Using this probability distribution, we can compute the 

average final energy of a neutron suffering an elastic 

collision as: 
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Hence, the average energy loss in each collision is: 

 

ifi TTTT 






 


2

1 
                                        10.54 

 

Accordingly, neutrons suffering scattering collisions in 

hydrogen (α=0) will lose, on average, half of their original 

energy in each collision. While in a scattering collision with 
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a 
238

U nucleus, they will lose, on average, less than 1% of 

their original energy. 

Finally, we can write the differential scattering cross 

section characterizing elastic scattering from stationary 

nuclei by substituting Eq.10.52 into Eq.10.46: 

 











otherwise

TTT
T

T

TT ifi

i

is

fis

,0

,
)1(

)(

)(






               10.55 

 

It should be mentioned that there are two instances where 

thermal motion of the nuclei must be taken into account. 

First, if the neutron speeds are comparable to the nuclear 

speeds, of course one can no longer treat the nuclei as 

stationary. This occurs in thermal energy (T<1eV), second, 

when the cross sections exhibit sharp resonance of width 

much less than 1 eV.   

 

10.6. Nuclear Reactor Criticality 
 

As soon as the discovery of nuclear fission was 

announced in early 1939, a lot of laboratory works were 

done to analyze the fission process, number of neutrons (on 

average υ = 2.43 neutron per fission) and energy released 

(~200 MeV per fission). It was immediately apparent that 

these neutrons could be utilized, under proper conditions, to 

produce fission of other fissile nuclei and thus a chain 

reaction could be initiated that could result in the release of 

tremendous amount of energy. The first successful nuclear 

reactor was constructed in Chicago and operated on 

December 2, 1942. Since then, many other nuclear reactors 
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of various designs and purposes have been built throughout 

the world. 

The nuclear reactor is thus a device or assembly in 

which controlled nuclear fission chain reactions can be 

maintained. Generally speaking, the reactor assembly 

consists of:  

1- reactor core; is a main part of the reactor that contains 

fuel of fissile materials such as 
235

U or 
239

Pu, fertile 

materials such as 
238

U, moderator to slowdown the fast 

neutrons released from fissions, mainly by elastic 

scattering, such as light water H2O, heavy water 

D2O,graphite or beryllium and control elements as 

neutron absorber such as boron, cadmium and 

gadolinium) 

2- reflector; the core is surrounded by a neutron reflector of 

a material characterized by low absorption cross section, 

such as light water or graphite, used to decrease the loss 

of neutrons from the core by scattering. 

 

The reactor is said to be critical when a steady state chain 

reaction is maintained, on average, exactly one of the several 

neutrons (υ = 2.43) emitted in the fission process causes 

another nucleus to fission. The power output of the assembly 

is then constant. The other fission neutrons are either 

absorbed without fission or else escape from the system. 

Criticality thus depends upon geometrical factors as well as 

the distribution and kinds of the material present. If an 

average of more than one fission neutron produces fission of 

another nucleus, the assembly is said to be supercritical and 

the power output increases. If less than one fission occurs 

per fission neutron produced, the unit is subcritical.  

Criticality is determined by the extent of neutron 

multiplication as successive generations are produced. If Ni 
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thermal neutrons are present in a system, their absorption 

will result in a certain number Ni+1 of next-generation 

thermal neutrons. The effective multiplication factor is 

defined as: 

i

i

eff
N

N
k 1                                                             10.56 

The system is:        critical if   keff = 1;  

                      supercritical if   keff > 1;  

                         subcritical if   keff < 1. 

 

It is useful to discuss keff independently of the size and 

shape of an assembly. Therefore, we introduce the infinite 

multiplication factor, k∞, for a system that is infinite in 

extent. For a finite system one can then write: 

 

keff = Pnl k∞                                                             10.57 

 

where Pnl is the probability that a neutron will not escape.  

The value of k∞ will depend on several factors. Of Ni  

total thermal neutrons present in the i
th 

generation in an 

infinite system, the average number of fast neutrons 

liberated per neutron absorbed in fission and other reactions 

in the fissile material is the reproduction factor (η) where: 
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where the summation of the absorption cross-section on j
th

 

isotopes in the system consist of fission and radioactive 

capture cross-sections, while the upper summation consists 

only the fissionable elements, in the case of reactor, only 
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235
U. In the case where the fuel contains several fissionable 

materials, it is necessary to account for each material. In the 

case of a reactor core containing both uranium-235 and 

uranium-238, the reproduction factor would be calculated as 

shown below: 

 

      
      

   

      
          

                                           10.59 

 

Table 10.2 lists values of υ and η for fission of several 

different fissionable materials by thermal neutrons and fast 

neutrons. 

 

Table 10.2 

Average number of neutrons librated in fission. 
 

 
 

Hence, (Ni η) fast fission neutrons will be produced. At 

neutron energies greater than 1 MeV, most of the fast 

neutron fission will be of 
238

U because of its larger 

proportion in the fuel. Since more than one neutron is 

produced in each fast-fission, there will be an increase in the 

number of neutron available. Now introducing the fast 

fission factor, denoted by ε, and defined as the ratio of the 

total number of fast neutrons slowing down past the fission 
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threshold of 
238

U to the number produced by thermal neutron 

fission. The mathematical expression is: 

 

  
                                                

                                                    
  10.60 

 

Hence, the number of neutrons produced is (Ni η ε) fast 

neutrons. ε is very close to unity in a homogenous reactors, 

but can be as high as 1.1 in certain heterogeneous reactors. 

In several natural-uranium, graphite-moderator reactors,       

ε = 1.03, therefore for a homogeneous distribution of fuel 

and moderator it is acceptable to approximate, ε ~ 1. 

While being slowed down, neutrons may be removed in 

nonfission processes. Many materials have resonances in the 

(n,γ) cross section at energies of several hundred eV and 

downward. Letting p represent the resonance escape 

probability (i.e., the probability that a fast neutron will slow 

down to thermal energies without radioactive capture or 

escaping the resonance cross section region), hence, the 

number of neutrons that reach thermal region is ((Ni η ε p). 

This ratio can be written as: 

 

  
                                            

                                          
           10.61 

 

 Generally, but depending on the particular 

circumstances, p ranges from ~0.7 to ~1 for enriched 

systems. In most natural-uranium, graphite-moderator 

reactors, p = 0.75. For pure 
235

U, p = 1. For natural uranium 

metal, p = 0; and so such a system, even of infinite extent, 

will never be critical. 

Finally, when the neutrons are thermalized, they will 

diffuse for a time in the infinite system until they are 

ultimately absorbed by fuel, by moderator, or by other 
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materials present in the reactor. Of the thermal neutrons, 

therefore, a fraction f, called the thermal utilization factor, 

will be absorbed in fuel material; the value of f is thus a 

fraction of thermal neutrons absorbed in fuel to the total 

thermal neutrons absorbed by all materials. 

According to Eq.10.18, the rate at which thermal 

neutrons are absorbed in a unit volume per unit time is equal 

ΣaI (neutrons.cm
-3

.sec
-1

), where Σa = nζa (cm
-1

) is the 

appropriate macroscopic absorption cross section and I 

(neutrons.cm
-2

.sec
-1

) is the thermal flux. The rate of 

absorption in a volume V will then be VΣaI per unit time. 

Accordingly, in a heterogeneous reactor, the general 

expression for the thermal utilization factor is thus: 

 

PaPPMaMMFaFF

FaFF

IVIVIV

IV
f




                     10.62 

 

where the subscripts F, M, and P indicate fuel, moderator, 

and parasitic absorbers (control rods, coolant, structure, 

fission products, and poison).  

In a homogenous reactor, the volume V terms are 

identical as are the neutron flux. Eq.10.62 can then be 

simplified as: 
 

 
aPaMaF

aFf



                                             10.63 

 

We, therefore, obtain for the total number Ni+1 of thermal 

neutrons in the next generation and we can write: 

 

Ni+1 = Ni η ε p f                                                       10.64 
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From the definition and Eq.10.56, it follows that the 

infinite-system multiplication factor is given by: 

 

k∞ = η ε p f                                                              10.65 

 

The right-hand side of Eq.10.65 is called the four-factor 

formula, describing the multiplication factor for an infinitely 

large system. The four factors depend on the composition 

and enrichment of the fuel and its physical distribution in the 

moderator.  
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Problems 
 

10-1. A sample containing 62 grams of 
31

P (100% 

abundant) is exposed to 2 x 10
11

 thermal neutrons cm
-2

 sec
-1

. 

If the thermal neutron absorption cross section is 0.19 barns, 

for how long must the sample be irradiated to produce      

3.7 x 10
10

 Bq of 
32

P? 

 

10-2. A narrow beam of 100 MeV neutrons, with a fluency 

of 10
5 

n/cm
2
.sec, is normally incident on an aluminum plate. 

The elastic scattering cross section of aluminum for         

100 MeV neutrons is 0.95 barns. The density of aluminum is   

2.7 g/cm
3
. 

a- How thick must the aluminum plate be in order to reduce 

the number of unscattered neutrons emerging from the 

plate by three orders of magnitude? 

b- How much would this plate attenuate a narrow beam of 

100 MeV photons? Knowing that μ/ρ = 0.025 cm
2
/g.  

 

10-3. A gold foil weighing 3.500 mg is irradiated with 

thermal neutrons for exactly 10 minutes. Forty-eight hours 

after the end of the irradiation, the foil is placed in a gamma 

spectrometer with 100% counting efficiency and an activity 

of 2750 Bq is recorded. Given:  
197

Au (100% abundance)   

Thermal neutron capture cross section, ζ = 98.8 barns 

   
197

Au + n → 
198

Au   

   
198

Au t½ = 2.7 days    

a- What was the thermal neutron flux (neutrons/cm
2
/sec) to 

which the foil was exposed? 

b- What would be the saturation activity of this gold foil 

when exposed to this neutron flux?  
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10-4. Estimate (order of magnitude) the ratio of the energy 

released when 1 g of uranium undergoes fission to the 

energy released when 1 g of TNT explodes.  

 

10-5. What are the particular fission fragments resulting 

from an even split of 
235

U, with 4 neutrons and 2 beta 

particles emitted instantaneously?  

 

10-6. An alloy is composed of 95% aluminum and 5% 

silicon (by weight). The density of the alloy is 2.66 g/cm
3
. 

Properties of aluminum and silicon are shown below: 

   Element      Gram Atomic Weight    ζa (b)        ζs (b) 

   Aluminum        26.9815                    0.23         1.49 

   Silicon              28.0855                    0.16         2.20 

a- Calculate the atom densities for the aluminum and 

silicon. 

b- Determine the absorption and scattering macroscopic 

cross sections for thermal neutrons.  

c- Calculate the mean free paths for absorption and 

scattering. 

 

10-7. The absorption cross section of 
113

Cd for certain 

neutrons is 20800 barns. Taking the density of this material 

to be 8.67 g/cm
3
, calculate the macroscopic cross section 

and the thickness of 
113

Cd required to reduce the intensity of 

the neutron beam to 1% of its original value.  

 

10-8. Calculate and compare the collision and absorption 

mean free paths for neutrons in graphite, knowing that        

ζs = 4.7 b, ζa = 0.0045 b and density ρ = 1.6 g/cm
3
.  
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10-9.  Calculate the macroscopic scattering cross sections of 

a certain energy in H2O, assuming that ζs(H) = 20.5 b and 

ζs(O) = 3.8 b. 

 

10-10. If a one cubic centimeter section of a reactor has a 

macroscopic fission cross section of 0.1 cm
-1

, and if the 

thermal neutron flux is 10
13

 n/cm
2
.sec, what is the fission 

rate in that cubic centimeter?  

 

10-11. A reactor operating at a flux level of                 

3x10
13 

n/cm
2
.sec contains 10

20
 atoms of uranium-235 per 

cm
3
. The reaction rate is 1.29 x 10

12
 fission/cm

3
. Calculate 

Σf and ζf.  

 

10-12. A beryllium target was bombarded with α-particles 

accelerated to a kinetic energy of 21.7 MeV in a cyclotron. It 

was reported that four groups of protons were observed 

corresponding to Q-values of -6.92, -7.87, -8.57 and -10.74 

MeV, respectively. 

a- What are the energies of the proton groups observed at 

an angle 90
o
 with the incident beam? 

b- Which of the Q-values corresponds to the ground state 

of the product nucleus and how does it compare with the 

value calculated from the atomic masses? 

c- To which levels of the product nucleus do the different 

proton groups correspond? 

d- What are the threshold energies for the excitation of the 

different states of the product nucleus?  

 

10-13. The reaction 
13

C (d, p)
 14

C has a resonance at a 

deuteron energy of 2.45 MeV. At what α-particle energy 

does this datum lead you to predict a resonance level for the 

reaction 
11

B (α, n)
 14

N?  
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10-14. The nucleus 
14

N has an excited state at energy     

12.8 MeV above the ground level. At what energy of the 

incident particle would you expect a resonance to occur in 

each of the following reactions:  

a- 
10

B (α, n)
 13

N; b- 
12

C (d, p)
 13

C?  

 

10-15. A tantalum foil 0.02 cm thick and with a density of 

16.6 g/cm
3
 is irradiated for 2 hours with a beam of thermal 

neutrons of flux 10
12

 neutrons/cm
2
.sec. The radionuclide 

182
Ta, with a half-life of 114 days, is formed as a result of 

the radiation 
181

Ta (n, γ) 
182

Ta and the foil has an activity of 

12.3 rad/cm
2
 immediately after the irradiation. Find:                

a- The number of atoms of 
182

Ta produced.    

b- The cross section for the reaction
181

Ta (n, γ) 
182

.  

 

10-16. A sample of lead was bombarded with thermal 

neutrons and the capture γ-rays were analyzed with a gamma 

spectrometer. Two γ-rays were observed, one with energy of 

6.734 MeV, the second with energy of 7.380 MeV. What 

reactions were responsible for these rays? 

 

10-17. The reaction 
9
Be (α, n) 

12
C with polonium α-particles 

with energy of 5.3 MeV is a useful source of neutrons. 

Calculate: 

a- The Q-value of the reaction. 

b- The energy of the neutrons which emerge at angles 0
o
, 

90
o
, and 180

o
 with the direction of the incident beam. 

 

10-18. Assume a uranium nucleus breaks up spontaneously 

into two roughly equal parts. Estimate the reduction in 

electrostatic energy of the nuclei. What is the relationship of 

this to the total change in energy? (Assume uniform charge 

distribution; nuclear radius= 1.2 × 10
−13

 A
1/3 

cm)  
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10-19. Calculate the reproduction factor for a reactor that 

uses 10% enriched uranium fuel. The microscopic 

absorption cross section for uranium-235 is 694 barns. The 

absorption cross section for uranium-238 is 2.71 barns. The 

microscopic fission cross section for uranium-235 is 582 

barns. The atom density of 
235

U is 4.83 x 10
21

 atoms/cm
3
. 

The atom density of 
238

U is 4.35 x 10
22

 atoms/cm
3
.  

 

10-20. Calculate the thermal utilization factor for a 

homogeneous reactor. The macroscopic absorption cross 

section of the fuel is 0.3020 cm
-1

, the macroscopic 

absorption cross section of the moderator is 0.0104 cm
-1

 and 

the macroscopic absorption cross section of the poison is 

0.0118 cm
-1

.  

 

10-21. Calculate k∞ for a homogeneous, natural uranium-

graphite-moderated assembly which contains 300 moles of 

graphite per mole of uranium. Assume natural uranium to 

contain one part of 235U to 139 parts of 238U, and use these 

constants: ζa(
235

U) = 694 b, : ζa(
238

U) = 2.71 b,              

ζa(M) = 0.0032 b, : ζf(
235

U) = 582 b, p = 0.705. 

 

10-22. Repeat the calculations of problem 10-21 for heavy 

water-moderated assembly with Nm/Nu = 50, p = 0.842 and 

for D2O ζa = 0.00092 b. Comment on the result. 

 

10-23. Calculate k∞ for an enriched uranium-graphite-

moderated assembly using 400 mole of graphite to 1 mole of 

uranium and a 
238

U/
235

U ratio of 70, which is about twice the 

natural concentration, p = 0.75. 
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Appendix I 
 

CODATA RECOMMENDED VALUES OF THE 

FUNDAMENTAL PHYSICAL CONSTANTS 

NIST SP 961 (Dec/2005) Values from: P. J. Mohr and B. N. 

Taylor, Rev. Mod. Phys.77,1(2005). A more extensive 

listing of constants is available in the above reference and on 

the NIST Physics Laboratory Web site 

physics.nist.gov/constants. 

 

 

Quantity  Symbol  Value  

speed of light in vacuum  c  2.99792458×10
8
 m/s  

gravitational constant  G 6.67259 × 10
−11

 m
3
/(kg s

2
)  

electron charge, 

elementary charge  

 e, e0 

 

1.60217733 × 10
−19

 C  

 

permittivity constant of 

free space or Electric 

constant 

ϵo = (μ0c
2
)

−1 

 

8.854187817 × 10
-12

 F/ m
 

 

permeability of free 

space  

or magnetic constant 

μ0  

 

4π × 10
−7

 N/A
2
  

12.566370614×10
-7

 N/A
2
    

Planck‟s constant 

            in eV s               

h  

 

6.6260755 × 10
−34

 J·s  

4.135 66743 × 10
-15

eV.s  

Planck‟s constant  

           in eV s                                                     

ћ=h/2π 

 

1.05457266 × 10
−34

 J ·s  

6.58211915 × 10
-16

 eV. s   

Avogadro‟s number  NA 6.0221367 × 10
23

 mol
−1

  

Faraday constant   F = NAe0  9.6485309 × 10
4
 C/mol  

electron mass  

in atomic mass unit 

energy equivalent  

me  

 

 

9.1093897 × 10
−31

 kg  

5:4857990945× 10
-4

 u 

0.51099906 MeV  

Rydbeg constant  R∞=(2h)
−1

mecα
2
  1.0973731534 × 10

7
 m

−1
  

fine-structure constant  

 
    

 (     )
   

  (     ) 
 α

−1
  

7.29735308 × 10
−3

 

137.0359895  

8.99× 10
9
 N.m

2
/C

2 

electron radius re =  ћ (mec)
−1

α  2.81794092 × 10
−15

 m  

 e−-Compton 

wavelength  

λC = h(mec)
−1

 2.42631058 × 10
−12

 m  

Bohr radius  a0 = reα
−2

  5.29177249 × 10
−11

 m  

atomic mass unit  u = 1/12 m(
12

C)  1.6605402 × 10
−27

 kg  
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proton mass 

in atomic mass unit 

energy equivalent 

mp  

 

 

1.6726231 × 10
−27

 kg 

1.00727646688 u 

938.27231 MeV 

neutron mass 

in atomic mass unit 

energy equivalent  

mn  

 

 

1.6749286 × 10
−27

 kg  

1:00866491560 u 

939.56563 MeV  

magnetic flux quantum  ф0 = h(2e0)
−1

  2.06783461 × 10
−15

 Wb  

specific electron charge −e0me
-1

  −1.75881962 × 10
11

 C/kg  

Bohr magneton  μB = e0ћ (2me)−1 9.2740154 × 10−24 J/T  

magnetic moment of 

electron  

μe  

 

9.2847701 × 10−24 J/T  

 

nuclear magneton   μN  =e0 ћ (2mp)
−1

  5.0507866 × 10−27 J/T  

magnetic moment of 

proton  

μp 

 

2:792847351  μN 

1.41060761 × 10
−26

 J/T  

magnetic moment of 

neutron 

μn 

 

-1.91304273 μN 

-0.96623645 × 10
-26

 J/T 

deuteron mass 

energy equivalent 

md 

 

2.01355321270 u 

1875.61282 MeV 

magnetic moment of 

deuteron 

μd 

 

0.8574382329  μN 

0.433073482 ×10
-26

 J/T 

gyromagnatic ratio   γp 2.67522128 × 10
8 
rad/sT  

quantum Hall resistance   RH 25812.8056 Ω  

universal gas constant   R  8.314510 J/(mol K)  

Boltzmann constant  k, kB = RNA
−1

 1.380658 × 10
−23

 J/K  

Stefan-Boltzmann 

constant  

ζ = π
2
kB

4
(60 ћ

3
c

2
)

−1
  5.67051 × 10−8 W/m

2
K

4 

  

Wien‟s constant  b = λmaxT  2.897756 × 10
−3

 m · K  
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Appendix II 
 

TABLE OF ELEMENTAL AND ISOTOPIC 

PROPERTIES 

Explanation of Table 

Column 1: 
Nuclides (Z, El) (in bold face) are listed in order of 

increasing atomic number (Z). The names and symbols for 

elements (El) are those adopted by the International Union 

of Pure and Applied Chemistry (2004). 

Column 2: 

Elemental atomic weight in atomic mass unit (u) 

Column 3: 

Atomic valance 

Column 4: 

Isotopes mass number (in bold face) are listed in order of 

increasing mass number (A) 

Column 5, Jπ: 

Nuclear spin and parity assignments, without and with 

parentheses, are based upon strong and weak arguments 

respectively.  

Column 6: 

Mass defect, Δ = M–A, of isotopes is given in MeV 

Column 7: 

Half-life t1/2 and natural Abundance of Isotopes (in bold 

face) is shown followed by their units ("%" symbol). 

Column 8: 

Decay modes are given in decreasing strength from left to 

right. The various modes of decay are given below: 

β–,       β
–
 decay.    β+,      β

+
 decay.     ε,    electron capture 

2β–,     double β
–
.    β–x,    delayed x (n, p, α) following β

–
. 

IT,       isomeric transition.      SF,     spontaneous fission. 

n, p, α,   neutron, proton and alpha decay. 
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Element   Atomic       Valance          A            J
π
            Δ                t1/2, Γ or          Decay 

 Z  El       Weight u                             MeV           Abundance      Mode 

0 n
 1.008665

  
1

 1/2+
 

8.071 10.24 m
 

β
- 

1H 

 

1.00794 7 

 

1 

 
1 

2 

3 

4 

1/2+ 

1+ 

1/2
+ 

2
–
 

7.289  
13.136 

14.950  

25.9  

99.985% 

0.015% 

12.32 y  

4.6 MeV 

 

 

β
-
 

n 

2He 

 

4.002602 

 

0 

 

3 

4 

5 

6 

7 

8 

1/2+ 

0+ 

3/2– 

0– 

3/2– 

0+ 

14.931 

2.425 

11.39 

17.595 

26.10  

31.598  

0.000137%

9.999863% 

0.60 MeV 

  806.7 ms 

150 keV  

119.0 ms   

 

 

α, n 

β
– 

n 

β– , β–n  

3Li 

 

6.941 2 

 

1 

 

4 

5 

6 

7 

8 

9 

2– 

3/2– 

1+ 

3/2– 

3+ 

3/2– 

25.3  

11.68  

14.087 

14.908 

20.947 

24.954  

6.03 MeV  

≈1.5 MeV  

7.59% 

92.41% 

838 ms 

178.3 ms   

p 

α, p 

 

 

β– , β–α 

β– , β–n    

4Be 9.012182 2 6 

7 

8 

9 

10 

11 

12 

13 

0+ 

3/2– 

0+ 

3/2– 

0+ 

1/2+ 

0+ 

1/2– 

18.375 

15.770  

4.942  

11.348 

12.607  

20.174  

25.08  

33.25  

92 keV 

53.22 d   

6.8 eV   

100% 

1.51×10
6
 y  

13.81 s 

21.49 ms 

2.7×10
–21

s   

p , α 

ε 

α 

 

β– 

β– , β–α 

β– , β–n 

n      

5B 

 

10.811 

 

3 

 

7 

8 

9 

10 

11 

12 

13 

14 

3/2– 

2+ 

3/2– 

3+ 

3/2– 

1+ 

3/2– 

2– 

27.87 

22.921 

12.416 

12.051 

8.668 

13.369 
16.562  

23.66  

1.4 MeV   

770 ms  

0.54 keV  

19.8% 

80.2% 3 

20.20 ms  

17.33 ms 

12.5 ms     

p , α 

ε , εα 

p 

 

 

β–,β–3α 

β– 

β– , β–n 

6C 

 

12.0107 

 

 

 

 

2,3,4 

 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

3/2– 

0+ 

3/2– 

0+ 

1/2– 

0+ 

1/2+ 

0+ 

 

0+ 

28.910  

15.699  

10.650  

0.000 

3.125 

3.020 

9.873 

13.694 

21.04 

24.93  

126.5 ms  

19.26 s  

20.334 m   

98.89% 

1.11% 

5700 y 

2.449 s 

0.747 s 

193 ms 

92 ms  

ε,εp,εα 

ε 

ε 

 

 

β– 

β– 

β–,β–n 

β–,β–n 

β–,β–n 
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Element   Atomic       Valance          A            J
π
            Δ                t1/2, Γ or          Decay 

 Z  El       Weight u                             MeV           Abundance      Mode 

7 N 

 

14.0067 

 

3,5 

 

 

11m 

12 

13 

14 

15 

16 

17 

18 

19 

1/2+ 

1+ 

1/2– 

1+ 

1/2– 

2– 

1/2– 

1– 

24.62 

17.338 

5.345 

2.863  
0.101  

5.684 

7.87 

13.11 

15.86  

1.58 MeV 

11.00 ms 

9.965 m 

99.634% 

0.366% 

7.13 s 

4.173 s 

624 ms 

271 ms   

p  

ε 

ε 

 

 

β–, β–α 

β–, β–n 

β–n,β–α 

β– , β–n 

8 O 

 

 

15.9994 

  

 

 

2 

 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

 3/2– 

0+  

1/2– 

0+ 

5/2+ 

0+ 

5/2+ 

0+ 

5/2+ 

0+ 

23.112  

8.007 

2.856 

–4.737  

–0.809 

–0.781 

3.335 

3.797 

8.060 

9.280 

8.58 ms 

70.641 s 

122.24 s 

99.762% 

0.038% 

0.200% 

26.88 s 

13.51 s 

3.42 s 

2.25 s 

ε , εp 

ε 

ε 

 

 

 

β– 

β– 

β– 

β–, β–n 

9 F 18 .9984 

 

 

1 16 

17 

18 

19 

20 

21 

22 

23 

24 

0– 

5/2+ 

1+ 

1/2+ 

2+ 

5/2+ 

4+ 

3/2,5/2+ 

(1,2,3)+ 

10.680 

1.952 

0.874 

–1.487 

–0.017 

–0.048 

2.790 

+ 3.33 

7.560 

40 keV 

64.49 s 

1.8291 h 

100% 

11.07 s 

4.158 s 

4.23 s 

2.23 s 

400 ms 

P 

ε 

ε 

 

β– 

β– 

β–, n 

β– 

β–, β– 

10Ne 

 

 

20.17976 

 

 

0 

 

 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

1/2– 

0+ 

1/2+ 

0+ 

3/2+ 

0+ 

5/2+ 

0+ 

3/2+ 

0+ 

16.46 

5.317 

1.751 

–7.042  

–5.732 

–8.025 

5.154 

5.951 

–2.11 

0.43 

109.2 ms 

1672 ms 

17.22 s 

90.48% 

0.27% 

9.25% 

37.24 s 

3.38 m 

602 ms 

192 ms 

ε, εp, εα 

ε 

ε 

 

 

 

β– 

β– 

β– 

β–, β–n 

11Na 22.98977 

 

 

1 20 

21 

22 

23 

24 

25 

2+ 

3/2+ 

3+ 

3/2+ 

4+ 

5/2+ 

6.848 

–2.184 

–5.182 

–9.530 

8.418 

–9.358 

447.9 ms 

22.49 s 

2.6027 y 

100% 

14.951 h 

59.1 s 

ε , εα 

ε  

ε 

 

β– 

β–  
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Element   Atomic       Valance          A            J
π
            Δ                t1/2, Γ or          Decay 

 Z  El       Weight u                             MeV           Abundance      Mode 

11Na 22.98977 

 

 

1 26 

27 

28 

3+ 

5/2+ 

1+ 

 –6.862 

–5.517 

–0.990 

1.077 s 

301 ms 

30.5 ms 

β– 

β–n 

β–, β–n 

12Mg 

 

 

24.3050 

 

 

2 21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

5/2+ 

0+ 

3/2+ 

0+ 

5/2+ 

0+ 

1/2+ 

0+ 

3/2+ 

0+ 

10.910 

–0.397  

–5.474 

–13.934  

–13.193 

–16.215 

–14.587 

–15.019 

–10.62 

–8.911 

122 ms 

3.8755 s 

11.317 s 

78.99% 

10.00% 

11.01% 

9.458 m 

20.915 h 

1.30 s 

335 ms 

ε , εp 

ε  

ε  

 

 

 

β– 

β– 

β– 

β– 

13Al 26.98154 

 

 

3 25 

26 

26m 

27 

28 

29 

30 

31 

32 

5/2+ 

5+ 

0+ 

5/2+ 

3+ 

5/2+ 

3+ 

3/2,5/2+ 

1+ 

–8.916 

–12.210 

–11.982 

–17.197 

–16.850 

–18.215 

–15.87 

–14.95 

–11.06 

7.183 s 

7.17×10
5
 y 

6.3452 s 

100% 

2.2414 m 

6.56 m 

3.60 s 

644 ms 

33 ms 

ε 

ε 

ε 

 

β– 

β– 

β– 

β– 

β– 

14Si 

 

 

28.0855 

 

 

4 

 

 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

34 

5/2+ 

0+ 

5/2+ 

0+ 

1/2+ 

0+ 

3/2+ 

0+ 

3/2+ 

0+ 

 

3.82  

–7.145  

–12.384 

–21.493  

–21.895 

 –24.433 

–22.949 

–24.081 

–20.49 

–19.96 

–14.36 

220 ms 

2.234 s 

4.16 s 

92.230% 

4.683% 

3.087% 

157.3 m 

132 y 

6.18 s 

2.77 s 

0.78 s 

ε , εp 

ε  

ε  

 

 

 

β– 

β– 

β– 

β– 

β– 

15P 30.97376 

 

 

3,5 27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

1/2+ 

1/2+ 

3+ 

1+ 

1/2+ 

1+ 

1/2+ 

1+ 

1/2+ 

4– 

 

–0.72 

–7.159  

–16.953  

–20.201 

–24.441 

–24.305  

–26.337 

–24.558 

–24.858  

–20.25 

–18.99    

260 ms 

270.3 ms 

4.142 s 

2.498 m 

100% 

14.262 d 

25.34 d 

12.43 s 

47.3 s 

5.6 s 

2.31 s 

ε , εp 

ε , εp, εα 

ε 

ε 

 

β–  

β– 

β–  

β– 

β– 

β– 
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Element   Atomic       Valance          A            J
π
            Δ                t1/2, Γ or          Decay 

 Z  El       Weight u                             MeV           Abundance      Mode 

16S 

 

 

 

32.060 

 

 

2,4,6 

 

31 

32 

33 

34 

35 

36 

37 

38 

39 

 

40 

41 

1/2+ 

0+ 

3/2+ 

0+ 

3/2+ 

0+ 

7/2–  

0+  

(3/2,5/2

,7/2)–  

0+  

7/2– 

 –19.045  

–26.016 

 –26.586 

–29.932 

–28.846 

–30.664 

–26.896  

–26.861 

–23.16  

 

–22.9 8 

–19.0 1 

2.572 s 

95.02% 

0.75% 

4.21% 

87.51 d 

0.02% 

5.05 m 

170.3 m 

11.5 s 

 

 8.8 s 

1.99 s 

ε 

 

 

 

β– 

 

β– 

β– 

β– 

 

β– 

β–, β–n 

17Cl 

 

35.453 

 

 

1,3,5,7 

 

33 

34 

34m 

35 

36 

37 

38 

38m 

39 

40 

41 

42 

3/2+ 

0+ 

3+ 

3/2+ 

2+ 

3/2+ 

2– 

5–   

3/2+  

2– 

1/2,3/2+ 

–21.003 

–24.440  

–24.293  

–29.014  

–29.522  

–31.761 

–29.798 

–29.127 

–29.800  

–27.56 

–27.31  

–24.9  

 2.511 s 

 1.5264 s 

32.00 m 

75.77% 

3.01×10
5
 y 

24.23% 

 37.24 m 

715 ms 

55.6 m 

1.35 m 

38.4 s 

6.8 s 

ε 

ε 

ε. IT 

 

β–,  ε 

 

β– 

IT 

β– 

β– 

β– 

β– 

18Ar 

 

 

39.94 

 

0 

 

 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

0+ 

3/2+ 

0+ 

3/2+ 

0+ 

7/2–  

0+ 

7/2–  

0+ 

5/2– 

0+  

–18.377  

–23.047  

–30.232 

–30.948  

–34.715 

–33.242 –

35.040 

–33.068  

–34.423  

–32.010  

–32.673  

 844.5 ms 

1.775 s 

0.3365% 

34.95 d 

0.0632% 

269 y 

99.6003% 

109.61 m 

32.9 y 

5.37 m 

11.87 m 

ε 

ε 

 

ε 

 

β– 

 

β– 

β– 

β– 

β– 

19K 

 

 

39.0983 

 

42 2– –

35.022 

12.321 h 

25 β– 

43 3/2+ –

36.593 

22.3 h 1 β– 

1 

 

 

37 

38 

38m 

39 

40 

 

41 

42 

43 

3/2+ 

3+ 

0+ 

3/2+ 

4– 

 

3/2+ 

2–  

3/2+ 

–24.800  

–28.801  

–28.670  

–33.807  

–33.535  

 

–35.559 

–35.022  

–36.593  

1.226 s 

7.636 m 

924.2 ms 

93.258% 

1.248×10
9
 y 

0.0117% 

6.7302% 

12.321 h 

22.3 h 

ε 

ε 

ε 

 

β
–
89.3% 

ε 10.7% 

 

β– 

β– 
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Element   Atomic       Valance          A            J
π
            Δ                t1/2, Γ or          Decay 

 Z  El       Weight u                             MeV           Abundance      Mode 

20Ca 

 

 

 

 

 

40.078 

 

 

 

 

2 

 

 

 

 

 

38 

39 

40 

 

41 

42 

43 

44 

45 

46 

 

47 

48 

 

49 

50 

0+ 

3/2+ 

0+ 

 

7/2– 

0+ 

7/2– 

0+ 

7/2– 

0+ 

 

7/2– 

0+ 

 

3/2–  

0+ 

–22.059  

–27.274  

–34.846  

 

–35.138  

–38.547 

–38.409 –

41.468 

–40.812  

–43.135 

 

–42.340  

–44.214 

 

–41.289  

–39.571  

440 ms 

859.6 ms 

>3.0×10
21

y  

96.94% 

1.02×10
5
y 

0.647% 

0.135% 

2.09% 

162.61 d 

0.28×10
16

y 

0.004% 

4.536 d 

2.3×10
19

 y 

0.187% 

8.718 m 

13.9 s 

ε 

ε 

2ε 

 

ε 

 

 

 

β– 

2β
–
 

 

β– 

2β
–
84% 

β
–
<25% 

β– 

β– 

21Sc 44.9559 

 

 

3 41 

42 

42m 

43 

44 

44m 

45 

45m 

46 

46m 

47 

48 

49 

7/2– 

0+ 

7+ 

7/2– 

2+ 

6+ 

7/2– 

3/2+ 

4+ 

1– 

2– 

6+ 

7/2– 

–28.642  

–32.121  

–31.505  

–36.188  

–37.816  

–37.545  

–41.068 

–41.056  

–41.757  

–41.615  

–44.332  

–44.496  

–46.552  

596.3 ms 

681.3 ms 

61.7 s 

3.891 h 

3.97 h 

58.61 h 

100% 

318 ms 

83.79 d 

18.75 s 

3.3492 d 

43.67 h 

57.2 m 

ε 

ε 

ε 

ε 

ε, I 

IT 

 

IT 

β– 

IT 

β– 

β– 

β– 

22Ti 

 

 

 

 

47.867 

 

 

4 

 

 

 

 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

7/2– 

0+ 

7/2– 

0+ 

5/2– 

0+ 

7/2– 

0+ 

3/2– 

0+ 

3/2– 

0+ 

3/2– 

0+ 

 

–29.321  

–37.549  

–39.006  

–44.123 

–44.932  

–48.488 

–48.559 –

51.427 

–49.728 

–49.465  

–46.8  

–45.6  

–41.7  

–38.9  

–33.5  

509 ms 

60.0 y 

184.8 m 

8.25% 

7.44% 

73.72% 

5.41% 

5.18% 

5.76 m 

1.7 m 

32.7 s 

1.5 s 

1.3 s 

200 ms 

60 ms 

ε 

ε 

ε 

 

 

 

 

 

β– 

β– 

β– 

β– 

β– 

β– , β–n 

β– , β–n 
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Element   Atomic       Valance          A            J
π
            Δ                t1/2, Γ or          Decay 

 Z  El       Weight u                             MeV           Abundance      Mode 

23V 

 

50.9415 

 

 

5 

 
46 

47 

48 

49 

50 

 

51 

52 

53 

54 

55 

56 

57 

58 

0+ 

3/2– 

4+ 

7/2– 

6+ 

 

7/2– 

3+ 

7/2– 

3+ 

7/2– 

1+ 

3/2– 

1+ 

–37.073  

–42.002  

–44.475  

–47.957  

–49.222  

 

–52.201 

–51.441  

–51.849  

–49.89  

–49.2  

–46.1 

–44.2 

–40.2  

422.50 ms 

32.6 m 

15.9735 d 

329 d 

1.4×10
17

y  

0.250%      

99.750% 

3.743 m 

1.60 m 

49.8 s 

6.54 s 

216 ms 

0.35 s 

185 ms 

  ε 

ε 

ε 

ε 

ε 83%, 

 β
–
 17% 

 

β– 

β– 

β– 

β– 

β–, β–n 

β–, β–n 

β–  

24Cr 

 

 

 

51.9961 

 

 

2,3,6 

 

 

 

47 

48 

49 

50 

 

51 

52 

53 

54 

55 

56 

57 

58 

3/2–  

0+ 

5/2– 

0+ 

 

7/2– 

0+ 

3/2– 

0+ 

3/2– 

0+ 

3/2,7/2– 

0+ 

–34.56  

–42.819  

–45.331  

–50.259  

 

–51.449  

–55.417 

–55.285  

–56.932 

 –55.107  

–55.281  

–52.524  

–51.8  

500 ms 

21.56 h 

42.3 m 

>1.3×10
18

y 

4.345% 

27.7025 d 

83.789% 

9.501% 

2.365% 

3.497 m 

5.94 m 

21.1 s 

7.0 s 

ε 

ε 

ε 

2ε 

 

ε 

 

 

 

β– 

β– 

β– 

β– 

25Mn 54.93805 

 

 

1to4,6,7 53 

54 

55 

56 

57 

58 

58m 

7/2– 

3+ 

5/2– 

3+ 

5/2– 

1+ 

4+ 

–54.688  

–55.555 

–57.711 

–56.910 

–57.487  

–55.91  

–55.83  

3.74×1
06

y 

312.12 d 

100% 

2.5789 h 

85.4 s 

3.0 s 

65.2 s  

ε 

ε , β– 

 

β– 

β– 

β– 

β–, IT 

26Fe 

 

 

 

55.845 

59 3/2–9 

β– 

60 0+ 3 β– 

61 3/2–

,5/2–6 β– 

2,3,4,6 

 

 

 

53 

53m 

54 

55 

56 

57 

58 

59 

60 

61 

7/2– 

19/2– 

0+ 

3/2– 

0+ 

1/2– 

0+ 

3/2– 

0+ 

3/2,5/2– 

–50.945  

–47.905  

–56.252 

 –57.479  

–60.605 

–60.180  

–62.153 

–60.663 

–61.412  

 –58.92  

8.51 m 

2.526 m 

5.845% 

2.737 y 

91.754% 

2.119% 

0.282% 

44.495 d 

1.5×106 y 

5.98 m 

ε 

IT 

 

ε 

 

 

 

β– 

β– 

β– 
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Element   Atomic       Valance          A            J
π
            Δ                t1/2, Γ or          Decay 

 Z  El       Weight u                             MeV           Abundance      Mode 

27Co 58.9332 

 

 

2,3 57 

58 

58m 

59 

60 

60m 

61 

62 

62m 

63 

64 

7/2– 

2+ 

5+ 

7/2– 

5+ 

2+ 

7/2– 

2+ 

5+ 

7/2– 

1+ 

–59.344  

–59.846 

 –59.821  

–62.228 

–61.649  

–61.590  

–62.898  

–61.43  

–61.41  

–61.84  

–59.79  

271.74 d 

70.86 d 

9.04 h 

100% 

1925.28 d 

10.467 m 

1.650 h 

1.50 m 

13.91 m 

27.4 s 

0.30 s 

ε 

ε 

IT 

 

β– 

IT,  β– 

β– 

β– 

β–, IT 

β– 

β– 

28Ni 

 

 

 

 

58.693 

 

 

 

0 to 3 

 

 

 

 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

0+ 

3/2– 

0+ 

3/2– 

0+ 

3/2– 

0+ 

1/2– 

0+ 

5/2– 

0+ 

–53.90  

–56.082  

–60.228 

–61.156  

–64.472  

–64.221 

–66.746 

–65.513  

–67.099 

–65.126  

–66.006  

6.075 d 

35.60 h 

68.077% 

7.6×10
4
 y 

26.223% 

1.140% 

3.634% 

100.1 y 

0.926% 

2.5172 h 

54.6 h 

ε 

ε 

 

ε 

 

 

 

β– 

 

β– 

β– 

29Cu 

 

63.546 

 

1,2 

 

60 

61 

62 

63 

64 

 65 

66 

67 

68 

68m 

2+ 

3/2– 

1+ 

3/2– 

1+ 

3/2– 

1+ 

3/2– 

1+ 

6– 

–58.344  

–61.984  

–62.798 –

65.579 

–65.424 –

67.264 

–66.258  

–67.319  

–65.567  

–64.845  

23.7 m 

3.333 h 

9.67 m 

69.17% 

12.700 h 

30.83% 

5.120 m 

61.83 h 

31.1 s 

3.75 m 

ε 

ε 

ε 

 

ε 

 

β– 

β– 

β– 

IT, β– 

30Zn 

 

 

 

65.39 

 

 

 

2 

 

 

 

 

62 

63 

64 

 

65 

66 

67 

68 

69 

 

69m 

70 

0+ 

3/2– 

0+ 

 

5/2– 

0+ 

5/2– 

0+ 

1/2– 

 

9/2+ 

0+ 

–61.17  

–62.213  

–66.004  

 

–65.912  

–68.899  

–67.880 

–70.00 

–68.418  

 

–67.979  

–69.565  

9.186 h 

38.47 m 

>2.8×10
16

y 

48.63% 

243.66 d 

27.90% 

4.10% 

18.75% 

56.4 m 

0.62% 

13.76 h 

>1.3×10
16

y  

ε 

ε 

ε 

 

ε 

 

 

 

β
–
 

 

IT, β– 

β– 



432 

 

Element   Atomic       Valance          A            J
π
            Δ                t1/2, Γ or          Decay 

 Z  El       Weight u                             MeV           Abundance      Mode 

31Ga 

 

69.723 

 

2,3 

 

67 

68 

69 

70 

71 

72 

73 

74 

74m 

3/2– 

1+ 

3/2– 

1+ 

3/2– 

3– 

3/2– 

3– 

0+ 

–66.880  

–67.086  

–69.328  

–68.910  

–70.140 

–68.589  

–69.699  

–68.050  

–67.990  

3.2623 d 

67.71 m 

60.108% 

21.14 m 

39.892% 

14.095 h 

4.86 h 

8.12 m 

9.5 s 

ε 

ε 

 

β–, ε 

 

β– 

β– 

β– 

IT, β– 

32Ge 

 

 

 

 

72.64 

 

 

 

2,4 

 

 

 

 

68 

69 

70 

71 

72 

73 

73m 

74 

75 

75m 

76 

 

77 

77m 

0+ 

5/2– 

0+ 

1/2– 

0+ 

9/2+ 

1/2– 

0+ 

1/2– 

7/2+ 

0+ 

 

7/2+ 

1/2– 

–66.980  

–67.101  

–70.563 

–69.908  

–72.586 

–71.298  

–71.231  

–73.422 

–71.856  

–71.717  

–73.213 

 

–71.214  

–71.054  

270.95 d 

39.05 h 

20.37% 

11.43 d 

27.31% 

7.76% 

0.499 s 

36.73% 

82.78 m 

47.7 s 

1.2×10
25

 y 

7.83% 

11.30 h   

52.9 s 

ε 

ε 

 

ε 

 

 

IT 

 

β– 

IT,  β– 

2β
–
 

 

β– 

β–, IT 

33As 74.921 

 

 

3,5 72 

73 

74 

75 

76 

77 

78 

79 

80 

2–  

3/2–  

2–  

3/2– 

2– 

3/2– 

2– 

3/2– 

1+ 

–68.230  

–70.957  

–70.860  

–73.032 

–72.289 

–73.917  

–72.817  

–73.636  

 –72.16  

26.0 h  

80.30 d 

17.77 d 

100% 

1.0942 d 

38.83 h 

90.7 m 

9.01 m 

15.2 s 

ε 

ε 

ε,  β– 

 

β– 

β– 

β– 

β– 

β– 

34Se 

 

 

 

 

 

 

 

 

 

 

 

78.96 

 

 

 

 

 

 

 

 

 

 

 

2,4,6 

 

 

 

 

 

 

 

 

 

 

 

73 

73m 

74 

75 

76 

77 

77m 

78 

79 

79m 

80 

81 

9/2+  

3/2–  

0+ 

5/2+  

0+ 

1/2– 

7/2+  

0+ 

7/2+  

1/2–  

0+ 

1/2– 

–68.22  

–68.19  

–72.213  

–72.169  

–75.252  

–74.600 

–74.438  

–77.026 

–75.918  

–75.822  

–77.760  

–76.390  

7.15 h 

39.8 m 

0.89% 

119.779 d 

9.37% 

7.63% 

17.36 s 

23.77% 

2.95×10
5
y 

3.92 m 

49.61% 

18.45 m 

ε 

IT,  ε 

 

ε 

 

2β
–
 

IT 

 

β– 

IT, β– 

 

β– 
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34Se 

 

 

 

78.96 

 

 

 

 

2,4,6 

 

 

 

 

81m 

82 

 

83 

83m 

7/2+ 

0+ 

 

9/2+  

1/2–  

–76.286  

–77.594  

 

–75.341 

 –75.112  

57.28 m  

9.1×10
19

y 

8.73% 

22.3 m 

70.1 s 4  

IT, β– 

2β– 

 

β– 

β– 

35Br 

 

79.904 

  

1,3,5,7 

 

77 

77m 

78 

79 

79m 

80 

81 

82 

82m 

83 

84 

84m 

3/2–  

9/2+  

1+  

3/2– 

9/2+  

1+ 

3/2– 

5–  

2–  

3/2–  

2–  

6–  

–73.235  

–73.129  

–73.452  

–76.068  

–75.861  

–75.890  

–77.975 

–77.496  

–77.451  

–79.009  

–77.80  

–77.48  

57.036 h 

4.28 m 

6.46 m   

50.69% 

4.86 s 

17.68 m 

49.31% 

35.282 h   

6.13 m 

2.40 h 

31.80 m 

6.0 m   

ε 

IT 

ε , β– 

 

IT 

β–, ε 

 

β– 

IT, β– 

β– 

β– 

β– 

36Kr 

 

 

 

 

83.80 

 

0 

 

 

 

 

 

77 

78 

 

79 

79m 

80 

81 

81m 

82 

83 

83m 

84 

85 

85m 

86 

87 

5/2+ 

0+ 

 

1/2–  

7/2+ 

0+ 

7/2+  

1/2–  

0+ 

9/2+ 

1/2–  

0+ 

9/2+  

1/2– 

0+ 

5/2+  

–70.169  

–74.180  

 

–74.443  

–74.313  

–77.893 

–77.694  

–77.503 

 –80.590 

–79.982  

–79.940  

–82.431 

–81.480  

–81.175  

–83.266 

–80.709  

74.4 m   

≥2.3×10
20

y  

0.35% 

35.04 h   

50 s 

2.28% 

2.29×10
5
y   

13.10 s  

11.58% 

11.49% 

1.83 h 

57.00% 

3916.8 d   

4.480 h   

17.30% 

76.3 m  

ε 

2ε 

 

ε 

IT 

 

ε 

IT , ε 

 

 

IT 

 

β– 

β– 

 

β– 

37Rb 

 

85.4678 

 

 

1 

 

83 

84 

84m 

85 

86 

86m 

87 

 

88 

89 

90 

90m 

91 

5/2– 

2–  

6– 

5/2– 

2– 

6– 

3/2– 

 

2–  

3/2–  

0– 

3– 

3/2–  

–79.075  

–79.750  

–79.286  

–82.167 

–82.747  

–82.191  

–84.598  

 

–82.609 

–81.713  

–79.362  

–79.255  

–77.745   

86.2 d  

33.1 d 

20.26 m 

72.17% 

18.642 d   

1.017 m   

4.97×10
10

y   

27.83% 

17.773 m 

15.15 m   

158 s 

258 s 

58.4 s 

ε 

ε, β– 

IT 

 

β
– 

IT , β– 

β– 

 

β– 

β– 

β– 

β–, IT 

β– 
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Element   Atomic       Valance          A            J
π
            Δ                t1/2, Γ or          Decay 

 Z  El       Weight u                             MeV           Abundance      Mode 

38Sr 

 

 

 

87.62 

 

2 

 

 

 

83 

83m 

84 

85 

85m 

86 

87 

87m 

88 

89 

90 

7/2+ 

1/2–  

0+ 

9/2+  

1/2–  

0+ 

9/2+ 

1/2–  

0+ 

5/2+  

0+  

–76.80  

–76.54 –

80.644 

–81.103  

–80.864  

–84.524 

–84.880  

–84.492  

–87.922 

–86.209  

–85.942  

32.41 h   

4.95 s   

0.56% 

64.84 d   

67.63 m   

9.86% 

7.00% 

2.815 h 

82.58% 

50.57 d  

28.90 y 

ε 

IT 

 

ε 

IT , ε 

 

 

IT , ε 

 

β– 

β– 

39Y 88.90585 

 

 

3 86 

86m 

87 

87m 

88 

89 

89m 

90 

90m 

91 

4– 

8+  

1/2–

9/2+  

 4–  

1/2–  

9/2+  

2–  

7+  

1/2–  

–79.28  

–79.07  

–83.019  

–82.638  

–84.299  

–87.702 

–86.793  

–86.488  

–85.806 

–86.345  

14.74 h   

48 m 

79.8 h  

13.37 h 

106.616 d   

100% 

15.28 s 

64.053 h   

3.19 h 

58.51 d 

ε 

IT, ε 

ε 

IT, ε 

ε 

 

IT 

β– 

IT, β– 

β– 

40Zr 

 

 

 

 

91.224 

  

4 

 

 

 

 

89 

89m 

90 

90m 

91 

92 

93 

94 

95 

96 

 

97 

9/2+  

1/2– 

0+ 

5– 

5/2+ 

0+ 

5/2+ 

0+ 

5/2+ 

0+ 

 

1/2+  

–84.869  

–84.281  

–88.767 

–86.448  

–87.890 –

88.454 

–87.117  

–87.267 

–85.658  

–85.443  

 

–82.947  

78.41 h   

4.161 m 

51.45% 

809.2 ms 

11.22% 

17.15% 

1.53×10
6
 y   

17.38% 

64.032 d 

>3.9×10
20

y 

2.80% 

16.744 h 

ε 

IT, ε 

 

IT 

2β
–
 

 

β– 

 

β– 

β– 

 

β– 

41Nb 92.90638 

 

2,3,4?,5 91 

91m 

92 

92m 

93 

93m 

94 

94m 

95 

95m 

96 

9/2+  

1/2–  

7+ 

2+ 

9/2+ 

1/2–  

6+ 

3+ 

9/2+ 

1/2–  

6+ 

–86.632  

–86.528  

–86.448  

–86.313  

–87.208 

–87.177  

–86.365  

–86.324  

–86.782  

–86.546 

 –85.604  

6.8×10
2
 y 

60.86 d 

3.47×10
7
y 

10.15 d 

100% 

16.13 y 

2.03×10
4
 y 

6.263 m 

34.991 d 

3.61 d 

23.35 h 

ε 

IT, ε 

ε, β– 

ε 

 

IT 

β– 

IT, β– 

β– 

IT, β– 

β– 
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Element   Atomic       Valance          A            J
π
            Δ                t1/2, Γ or          Decay 

 Z  El       Weight u                             MeV           Abundance      Mode 

42Mo 

 

 

 

 

95.94 

 

 

2 to 6 

 

 

 

 

 

91 

91m 

92 

93 

93m 

94 

95 

96 

97 

98 

99 

100 

 

101 

102 

2+ 

1/2– 

0+ 

5/2+  

21/2+ 

0+ 

5/2+ 

0+ 

5/2+ 

0+ 

1/2+ 

0+ 

 

1/2+  

0+  

–82.20  

–81.55  

–86.805 

–86.803  

–84.379  

–88.410 

–87.707  

–88.790 

–87.540  

–88.112 

–85.966  

–86.184  

 

–83.511  

–83.56  

15.49 m 

64.6 s 

14.84% 

4.0×10
3
 y 

6.85 h 

9.25%                       

15.92% 

16.68% 

9.55% 

24.13% 

2.7489 d  

0.78×10
19

 y 

9.63% 

14.61 m  

11.3 m 

ε 

ε, IT 

 

ε 

IT, ε 

 

 

 

 

 

β– 

2β– 

 

β– 

β– 

43Tc Non stable 

isotopes 

 

0,2,4 to 7 93 

93m 

94 

94m 

95 

95m 

96 

96m 

9/2+ 

1/2– 

7+ 

2+ 

9/2+ 

1/2– 

7+ 

4+ 

–83.603 

–83.211  

–84.154  

–84.079  

–86.017  

 –85.978  

–85.817  

–85.783  

2.75 h 

43.5 m 

293 m  

52.0 m 

20.0 h 

61 d 

4.28 d 

51.5 m 

ε 

IT, ε 

ε 

IT, ε 

ε 

IT, ε 

ε 

IT, ε 

44Ru 

 

 

 

 

 

101.07 

 

 

 

 

 

0 to 8 

 

 

 

 

 

 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

5/2+ 

0+ 

5/2+ 

0+ 

5/2+ 

0+ 

5/2+ 

0+ 

3/2+ 

0+ 

3/2+ 

0+ 

–83.45  

–86.072 

–86.112  

–88.225 

–87.617  

–89.219 

–87.950  

–89.098 

–87.259  

–88.089 

–85.928  

–86.322  

1.643 h 

5.54% 

2.791 d 

1.87% 

12.76% 

12.60% 

17.06% 

31.55% 

39.26 d 

18.62% 

4.44 h 

373.59 d 

ε 

 

ε 

 

 

 

 

 

β– 

 

β– 

β– 

45Rh 102.9055 

 

3 101 

101m 

102 

102m 

103 

103m 

104 

104m 

105 

1/2–

9/2+ 

1–,2–  

6+ 

1/2– 

7/2+ 

1+ 

5+ 

7/2+ 

–87.41  

–87.25  

–86.775  

–86.634  

–88.022 

–87.982  

–86.950  

–86.821  

–87.846  

3.3 y   

4.34 d 

207 d 

≈2.9 y 

100% 

56.114 m 

42.3 s 

4.34 m 

35.36 h 

ε 

ε, IT 

ε, β– 

ε ,IT 

 

IT 

β–, ε 

IT, β– 

β– 
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Element   Atomic       Valance          A            J
π
            Δ                t1/2, Γ or          Decay 

 Z  El       Weight u                             MeV           Abundance      Mode 

46Pd 

 

 

 

 

106.42 

 

 

 

2 to 4 

 

 

 

 

 

101 

102 

103 

104 

105 

106 

107 

108 

109 

109m 

110 

111 

5/2+ 

0+ 

5/2+ 

0+ 

5/2+ 

0+ 

5/2+ 

0+ 

5/2+ 

11/2–

0+ 

5/2+ 

–85.43  

–87.925 

–87.479  

–89.390  

–88.413 

–89.902  

–88.368  

–89.524 

–87.607  

–87.418  

–88.35 

–86.00  

8.47 h   

1.02% 

16.991 d   

11.14% 

22.33% 

27.33% 
6.5×10

6
y  

26.46% 

13.7012 h 

4.696 m 

11.72% 

23.4 m   

ε 

 

ε 

 

 

 

β– 

 

β– 

IT 

 

β– 

47Ag 107.868 

 

1 

 

106 

106m 

107 

107m 

108 

108m 

109 

109m 

1+ 

6+ 

1/2– 

7/2+ 

1+ 

6+ 

1/2– 

7/2+ 

–86.937  

–86.847  

–88.402 

–88.309  

–87.602  

–87.492  

–88.723 

–88.635  

23.96 m 

8.28 d   

51.839% 

44.5 s 

2.37 m   

438 y   

48.161% 

38.0 s 

ε, β– 

ε 

 

IT 

β–, ε 

ε, IT 

 

IT 

48Cd 

 

 

 

 

112.411 

 

 

2 

 

 

 

 

 

106 

 

107 

108 

 

109 

110 

111 

111m 

112 

113 

 

114 

 

115 

115m 

116 

0+ 

 

5/2+ 

0+ 

 

5/2+ 

0+ 

1/2+ 

11/2–  

0+ 

1/2+ 

 

0+ 

 

1/2+  

11/2–  

0+ 

–87.132  

 

–86.985  

–89.252  

 

–88.508  

–90.353  

 –89.257  

–88.861  

–90.580  

–89.049  

 

–90.021  

 

–88.090 

–87.910  

 –88.719  

≥2.6×10
17

y 

1.25% 

6.50 h   

>1.0×10
18

y 

0.89% 

461.4 d 

12.49% 

12.80% 

48.50 m 

24.13% 

7.7×10
15

y 

12.22% 

>6.4×10
18

y 

28.73% 

53.46 h 

44.56 d   

3.1×10
19

y 

7.49% 

2ε 

2ε 

ε 

2ε 

 

ε 

 

 

IT 

β– 

 

2β– 

β– 

β– 

2β
– 

49In 

 

114.81 

 

1 to 3 

 
112 

113 

114 

115 

 

115m 

1+ 

9/2+ 

1+ 

9/2+ 

 

1/2– 

–87.996  

–89.370  

–88.572 + 

–89.537  

 

–89.200  

14.97 m 

4.29% 
71.9 s   

4.41×10
14

y 

95.71% 

4.486 h 

ε, β– 

 

β–, ε 

β
–
 

 

IT, β– 
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Element   Atomic       Valance          A            J
π
            Δ                t1/2, Γ or          Decay 

 Z  El       Weight u                             MeV           Abundance      Mode 

50Sn 

 

 

 

 

 

 

                                                          

 

118.710 

 

 

 

 

 

 

2,4 

 

 

 

 

 

 

 

 

 

112 

113 

113m 

114 

115 

116 

117 

117m 

118 

119 

119m 

120 

121 

122 

123 

124 

125 

0+ 

1/2+  

7/2+ 

0+ 

1/2+ 

0+ 

1/2+ 

11/2–

0+ 

1/2+ 

11/2–

0+ 

3/2+  

0+ 

11/2–

0+ 

11/2–  

–88.661 

 –88.333  

–88.256  

–90.561 

–90.036  

–91.528 

–90.400 

 –90.085  

–91.656 

–90.068 

 –89.979  

–91.105 

–89.204  

–89.946  

–87.821  

–88.237 

–85.898  

 0.97% 
115.09 d   

21.4 m   

0.66% 

0.34% 

14.54% 

7.68% 

13.76 d 

24.22% 

8.59% 

293.1 d 

32.58% 

27.03 h  

4.63% 

129.2 d  

5.79% 

9.64 d   

 

ε 

IT, ε 

 

 

 

 

IT 

 

 

 

 

β– 

 

β– 

 

β– 

51Sb 121.76 

  

0,±3,5            120 

121 

122 

122m 

123 

124 

1+ 

5/2+ 

2– 

8– 

7/2+ 

3–  

–88.424  

–89.595 

 –88.330 

 –88.167  

–89.224 

–87.620  

15.89 m  

57.21% 

2.7238 d 

4.191 m 

42.79% 

60.11 d  

ε 

 

β–, ε 

 

 

β– 

52Te 

 

 

 

 

 

 

127.60 

 

 

 

 

 

 

 

 

 

2,4,6 

 

 

 

 

 

 

 

120 

 

121 

122 

123 

 

124 

125 

126 

127 

128 

 

130 

0+ 

 

1/2+  

0+ 

1/2+ 

 

0+ 

1/2+ 

0+ 

3/2+ 

0+ 

 

0+ 

–89.405  

 

–88.55  

–90.314 

–89.172  

 

–90.524  

–89.022 

–90.065  

–88.281  

–88.992  

 

–87.351  

>2.2×10
16

y 

0.09% 

19.16 d   

2.55% 

>9.2×10
16

y 

0.89% 

4.74% 

7.07% 

18.84% 

9.35 h 

8.8×10
18

y 

31.74% 

>5×10
23

y  

34.08% 

2ε 

 

ε 

 

ε 

 

 

 

 

β– 

2β– 

 

2β– 

53I 126.9 

  

1,3,5,7 125 

126 

127 

128 

129 

130 

131 

5/2+ 

2–  

5/2+  

1+ 

7/2+  

5+  

7/2+ 

–88.836  

–87.910  

–88.983 

–87.738  

–88.503  

–86.932 

–87.444  

59.400 d  

12.93 d 

100% 

24.99 m 

1.57×10
7
y 

12.36 h 

8.0207 d 

ε 

ε, β– 

 

β–, ε 

β– 

β– 

β– 



438 

 

Element   Atomic       Valance          A            J
π
            Δ                t1/2, Γ or          Decay 

 Z  El       Weight u                             MeV           Abundance      Mode 

54Xe 

 

 

 

 

 

 

 

131. 293 

 

 

 

 

0 

 

 

 

 

 

 

 

 

124 

 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

 

135 

136 

0+ 

 

1/2+ 

0+ 

1/2+ 

0+ 

1/2+ 

0+ 

3/2+ 

0+ 

3/2+  

0+ 

 

3/2+  

0+ 

–87.660  

 

–87.192 

 –89.169 

–88.321  

–89.860 

–88.697  

–89.882 

–88.415  

–89.281 

–87.644  

–88.124  

 

–86.417  

–86.425  

≥1.1×10
17

y 

0.095% 

16.9 h  

0.089% 
36.4 d  

1.910% 

26.40% 

4.071% 

21.232% 

26.909% 

5.243 d  

>5.8×10
22

y 

10.436% 

9.14 h  

>2.4×10
21

y  

8.857% 

2ε 

 

ε 

 

ε 

 

 

2β
–
≥ 0% 

2β– 

 

β– 

2β– 

 

β– 

2β– 

55 Cs 132.905 

 

 

1 131 

132 

133  

134 

134m 

135   

5/2+ 

2+ 

7/2+ 

4+ 

8–  

 7/2+        

–88.060  

–87.156  

–88.071 

–86.891  

–86.753  

–87.582  

9.689 d  

6.480 d  

100% 

2.0652 y   

2.912 h 

2.3×10
6
y 

ε 

ε, β– 

 

β– , ε 

IT 

β– 

56 Ba 

 

 

 

 

 

137.327 

 

 

2 

 

 

 

 

 

 

130 

 

131 

132 

 

133 

133m 

134 

135 

136 

136m 

137 

137m 

138 

0+  

 

1/2+  

0+ 

 

1/2+ 

11/2–

0+ 

3/2+ 

0+ 

7–  

11/2–

3/2+ 

0+ 

–87.262  

 

–86.684  

–88.435  

 

–87.553  

–87.265  

–88.950 

–87.851  

–88.887 

–86.856  

–87.721 

–87.060  

–88.262 

≥3.5×10
14

y  

0.106% 

11.50 d   

>3.0×10
21

y 

0.101% 

3841 d  

38.9 h 

2.417% 

6.592% 

7.854% 
0.3084 s 

11.232% 
2.552 m 

71.698% 

2ε 

 

ε 

2ε 

 

ε 

IT, ε 

 

 

 

IT 

IT 

57 La 138.9055 

 

 

3 

 
136 

137 

138 

 

139 

140 

141 

142 

1+ 

7/2+ 

5+ 

 

7/2+ 

3–  

7/2+  

2– 

–86.04  

–87.10 

–86.525  

 

–87.231 

–84.321  

–82.938  

–80.035  

9.87 m 

6×104 y  

1.02×10
11

y  

0.090% 

99.910% 

1.6781 d   

3.92 h 

91.1 m   

ε 

ε 

ε , β– 

 

 

β– 

β– 

β– 
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Element   Atomic       Valance          A            J
π
            Δ                t1/2, Γ or          Decay 

 Z  El       Weight u                             MeV           Abundance      Mode 

58 Ce 

 

 

140.116 

 

 

3,4 

 

 

 

136 

 

137 

137m 

138 

 

139 

140 

141 

142 

0+ 

 

3/2+  

11/2–  

0+ 

 

3/2+  

0+ 

7/2–  

0+ 

–86.47  

 

–85.88  

–85.62  

–87.57 

 

–86.952  

–88.083 

 –85.440  

–84.538  

>0.7×10
14

y 

0.185% 

9.0 h   

34.4 h 

≥0.9×10
14

y  

0.251%                 
137.641 d  

88.450% 
32.508 d  

>2.6×10
17

y 

11.114%  

2ε 

 

ε 

IT, ε 

2ε 

 

ε 

 

β– 

2β– 

 

59 Pr 140.907 

 

   
 

3 139 

140 

141 

142 

143 

5/2+ 

1+  

5/2+  

2– 

7/2+  

–84.823 

 –84.695  

–86.021 

–83.793  

–83.074  

4.41 h   

3.39 m 

100% 

19.12 h   

 13.57 d   

ε 

ε 

 

β–, ε 

β– 

60 Nd 

 

144.24 

 

 

 

 

 

3 

 

 

 

 

 

 

142 

143 

144 

 

145 

146 

147 

148 

149 

150 

0+ 

7/2– 

0+ 

 

7/2– 

0+ 

5/2–  

0+ 

5/2–  

0+ 

–85.955 

–84.007  

–83.753  

 

–81.437 

 –80.931 

–78.152 –

77.413 

–74.381  

–73.690  

27.2% 

12.2% 

2.29×10
15

y 

23.8% 

8.3% 

17.2% 

10.98 d   

5.7% 
1.728 h  

0.79×10
19

y 

5.6% 

 

 

α 

 

 

 

β– 

 

β– 

2β– 

 

61Pm Non stable 

isotopes 

  

 

3 144 

145 

146 

147 

5–  

5/2+ 

3– 

7/2+ 

–81.421   

–81.274  

 –79.460 

–79.048  

363 d 

17.7 y   

5.53 y   

2.6234 y   

ε 

ε, α 

ε, β–  

β– 

62Sm 

 

 

 

 

 

150.36 

 

 

 

 

 

 

 

2,3 

 

 

 

 

 

 

144 

145 

146 

147 

 

148 

 

149 

150 

151 

152 

153 

154 

0+ 

7/2 

 0+ 

7/2– 

 

0+ 

 

7/2– 

0+ 

5/2– 

0+ 

3/2+  

0+ 

–81.972  

 –80.658 

 –81.002  

–79.272  

 

 –79.342 

  

–77.142 

–77.057  

–74.582  

–74.769 

–72.566  

–72.462 

3.07% 

340 d  

10.3×10
7
y   

1.06×10
11

y 

14.99% 

7×10
15

y 

11.24% 

13.82% 

7.38% 

90 y  

26.75% 

46.284 h  

22.75% 

 

ε 

α 

α 

 

α 

 

 

 

β– 

 

β– 
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Element   Atomic       Valance          A            J
π
            Δ                t1/2, Γ or          Decay 

 Z  El       Weight u                             MeV           Abundance      Mode 

63 Eu 151.964 

 

2,3 

 
150 

151 

152 

152m 

153 

154 

5– 

5/2+ 

3–  

0– 

5/2+ 

3–  

–74.797 

 –74.659 

–72.895 

 –72.849 

 –73.373 

–71.744  

36.9 y 

47.81% 

13.506 y  

9.3116 h  

52.19% 

8.590 y   

ε 

 

ε, β– 

β–, ε 

 

β– 

64 Gd 

 

 

 

 

157.25 

 

 

 

 

 

 

 

3 

 

 

 

 

 

 

152 

 

153 

154 

155 

156 

157 

158 

159 

160 

 

161 

0+ 

 

3/2–  

0+ 

3/2– 

0+ 

3/2– 

0+ 

3/2–  

0+ 

 

5/2– 

–74.714  

 

–72.890  

–73.713 

–72.077 

 –72.542 

–70.831 

 –70.697 

–68.568  

–67.949  

 

–65.513  

1.08×10
14

y   

0.20% 

240.4 d   

2.18% 

14.80% 

20.47% 

15.65% 

24.84% 
18.479 h  

>3.1×10
19

y 

21.86% 

3.66 m   

α 

 

ε 

 

α 

 

2β– 

 

β– 

β– 

 

β– 

65 Tb 158.92 

 

3,4 158 

158m 

159 

160 

161 

3– 

0– 

3/2+ 

3–  

3/2+  

–69.477   

–69.367  

–69.539 

–67.843  

–67.468  

180 y  

10.70 s   

100% 

72.3 d  

 6.906 d 

ε, β– 

IT, β–,ε 

 

β– 

β– 

66 Dy 

 

 

 

 

 

 

162.50 

 

 

 

 

 

 

 

3 

 

 

 

 

 

 

155 

156 

157 

158 

159 

160 

161 

162 

163 

164 

165 

3/2–  

0+ 

3/2– 

0+ 

3/2–  

0+ 

5/2+ 

0+ 

5/2– 

0+ 

7/2+  

–69.16  

–70.530  

–69.428  

–70.412  

–69.174  

–69.678  

–68.061 

–68.187  

–66.386 

–65.973 

–63.618  

9.9 h   

0.06% 
8.14 h  

0.10% 
144.4 d  

2.34% 

18.91% 

25.51% 

24.90% 

28.18% 

2.334 h   

ε 

 

ε 

 

ε 

 

 

 

 

 

β– 

67 Ho 164.930 

 

 

3 163 

165m 

164 

165 

166 

167 

7/2–  

1/2+  

1+ 

7/2– 

0–  

7/2–  

–66.384  

–66.086  

–64.987  

–64.905 

–63.077 

 –62.287  

4570 y   

1.09 s  

29 m  

100% 

26.83 h   

3.003 h 

ε 

IT, ε 

ε, β– 

 

β– 

β– 

68 Er 

 

167.259 

 

3 162 

163 

164 

165 

0+ 

5/2– 

0+ 

5/2–  

–66.343  

–65.174  

–65.950 

–64.528  

0.139% 
75.0 m  

1.601% 
10.36 h  

 

ε 

 

ε 
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Element   Atomic       Valance          A            J
π
            Δ                t1/2, Γ or          Decay 

 Z  El       Weight u                             MeV           Abundance      Mode 

68 Er 

 

 

 

 

 

167.259 

 

 

 

 

 

3 

 

 

 

 

 

166 

167 

168 

169 

170 

171 

0+ 

7/2+ 

0+ 

1/2– 

0+ 

5/2–  

–64.932  

–63.297 

–62.997  

–60.929  

–60.115 

–57.725  

33.503% 

22.869% 

26.978% 

9.392 d   

14.910% 

7.516 h   

 

 

 

β– 

 

β– 

69Tm 168.934 

 

3 167 

168 

169 

170 

171 

1/2+ 

3+  

1/2+  

1–  

1/2+  

–62.548  

–61.318  

–61.280 

–59.801  

–59.216  

9.25 d  

 93.1 d   

100% 

128.6 d  

1.92 y 

ε 

ε 

 

β–, ε 

β– 

70 Yb 

 

 

 

 

 

173.04 

 

 

 

 

 

 

 

2,3 

 

 

 

 

 

 

167 

168 

169 

169m 

170 

171 

172 

173 

174 

175 

176 

5/2– 

0+ 

7/2+  
1/2–  

0+ 

1/2– 

0+ 

5/2– 

0+ 

7/2–  

0+ 

–60.594 

–61.575  

–60.370  

–60.346  

–60.769 

–59.312  

–59.260 

–57.556  

–56.950 

–54.701 

 –53.494  

17.5 m  

0.13% 
32.018 d  

46 s  

3.04% 

14.28% 

21.83% 

16.13% 

31.83% 
4.185 d  

≥1.6×10
17

y 

12.76%          

ε 

ε 

 

IT 

 

 

 

β– 

2β– 

71 Lu
 174.967 

 

 
 

3 
 

174 

174m 

175 

176 

 

177
 

1– 

6– 

7/2+ 

7– 

 

7/2+ 
 

–55.575  

–55.404  

–55.171 

–53.387 

 

 –52.389  

3.31 y   

142 d  

97.41% 

3.76×10
10

y 

2.59% 

6.6475 d 
 

ε
 

IT, ε 

 

β– 

 

β– 

72 Hf 

 

 

 

178.49 

 

 

4 

 

 

 

 

 

174 

 

175 

176 

177 

178 

179 

180 

181 

0+ 

 

5/2– 

0+ 

7/2– 

0+ 

9/2+ 

0+ 

1/2–  

–55.847  

 

–54.484 

 –54.577 

–52.890  

–52.444 

–50.472  

–49.788 

–47.412  

2.0×10
15

 y  

0.16% 

70 d 2 

5.26% 

18.60% 

27.28% 

13.62% 

35.08% 

42.39 d  

α 

 

ε  

 

 

 

 

 

β– 

73 Ta 180.9479 

 

  

2?,3,4?,5 180 

180m 

181 

182 

182m 

183 

1+ 

 9–

7/2+ 

3–  

5+  

7/2+  

–48.936  

–48.859  

–48.442 

–46.433 

 –46.417  

–45.296  

8.154 h 6 

>1.2×10
15

y 

100% 

114.43 d  

283 ms 

5.1 d  

ε, β– 

2ε ? 

 

β– 

IT 

β– 
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Element   Atomic       Valance          A            J
π
            Δ                t1/2, Γ or          Decay 

 Z  El       Weight u                             MeV           Abundance      Mode 

74 W 

 

 

 

 

183.84 

 

 

 

 

 

2 to 6 

 

 

 

 

180 

 

181 

182 

 

183 

 

184 

 

185 

186 

 

187 

0+ 

 

9/2+  

0+ 

 

1/2– 

 

0+ 

 

3/2–  

0+ 

 

3/2–  

–49.645  

 

–48.254  

–48.248  

 

–46.367  

 

–45.707  

 

–43.390  

–42.509  

 

–39.905  

1.8×10
18

 y 

0.12% 

121.2 d  

>8.3×10
18

y 

26.50% 

>1.3×10
19

y 

14.31% 

>2.9×10
19

y 

30.64% 

75.1 d  

>2.7×10
19

y 

28.43% 

23.72 h  

α 

 

ε 

α 

 

α 

 

α 

 

β– 

α 

 

β– 

75 Re 186.207 

 

 

4,6,7 

 
185 

186 

187 

 

188 

5/2+ 

1– 

5/2+ 

 

1–  

–43.822  

–41.930  

–41.216  

 

–39.016  

37.40% 
3.7186 d 

4.12×10
10

y 

62.60% 

17.003 h 

 

β–, ε 

β– 

 

β– 

76 Os 

 

 

 

 

 

190.23 

 

 

 

0 to 8 

 

 

 

 

 

 

184 

 

185 

186 

 

187 

188 

189 

190 

191 

192 

0+ 

 

1/2– 

0+ 

 

1/2– 

0+ 

3/2– 

0+ 

9/2– 

0+ 

3/2–  

–44.256  

 

–42.809  

–43.000  

 

–41.218  

–41.136 

–38.985  

–38.706 

–36.394  

–35.881 

–33.393  

>5.6×10
13

y 

0.02% 

93.6 d  

2.0×10
15

y 

1.59% 

1.6% 

13.29% 

16.21% 

26.36% 

415.4 d 

0.93% 

30.11 h  

α 

 

ε 

α 

 

 

 

 

 

β– 

 

β– 

77 Ir 

 

192.217 

 

 

 

3,4 

 
191 

192 

193 

194 

3/2+ 

4+ 

3/2+ 

1– 

–36.706  

–34.833  

–34.534 

–32.529  

37.3% 

73.827 d  

62.7% 

19.28 h  

 

β–, ε 

 

β– 

78 Pt 

 

 

 

 

 

195.078 

 

 

 

 

1?,2,3 

 

 

 

 

 

190 

 

191 

192 

193 

194 

195 

196 

197 

198 

0+ 

 

3/2–  

0+ 

1/2– 

0+ 

1/2– 

0+ 

1/2– 

0+ 

–37.323  

 

–35.698  

–36.293  

–34.477  

–34.763 

–32.797  

–32.647 

–30.422  

–29.908 

6.5×10
11

y 

0.014% 

2.862 d  

0.782% 
50 y  

32.967% 

33.832% 

25.242% 

19.8915 h 

7.163% 

α 

 

ε 

 

ε 

 

 

 

β– 
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Element   Atomic       Valance          A            J
π
            Δ                t1/2, Γ or          Decay 

 Z  El       Weight u                             MeV           Abundance      Mode 

79 Au 196.966 

 

1,3 196 

196m 

197 

198 

199 

2– 

5+  

3/2+ 

2–  

3/2+  

–31.140 –

31.055 

 –31.141 

–29.582  

–29.095  

6.1669 d  

8.1 s  

100% 

2.6956 d  

3.139 d 

ε, β– 

IT 

 

β– 

β– 

80 Hg 

 

                                                     

 

200.5 

 

 

 

 

 

1,2 

 

 

 

 

 

 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205 

0+ 

1/2–  

0+ 

1/2– 

0+ 

3/2– 

0+ 

5/2–  

0+ 

1/2– 

–31.827 

–30.541  

–30.954  

–29.547 

–29.504 

 –27.663 

–27.346 

 –25.269  

–24.690 

–22.288  

0.15% 
64.14 h  

9.97% 

16.87% 

23.10% 

13.18% 

29.86% 
46.595 d  

6.87% 

5.14 m  

 

ε 

 

 

 

 

 

β– 

 

β– 

81 Tl 

 

204.383 

 

208 5(+)  

1,3 

 
201 

202 

203 

204 

205 

206 

207 

208 

1/2+  

2– 

1/2+ 

2– 

1/2+ 

0–  

1/2+ 

5+  

–27.18 

 –25.98  

–25.761 

–24.346  

–23.821 

–22.253  

–21.034  

–16.750  

72.912 h  

12.23 d 

29.524% 

3.78 y   

70.476% 

4.200 m  

4.77 m 

3.053 m  

ε 

ε 

 

β–, ε 

 

β– 

β– 

β– 

82 Pb 

 

 

 

207.21 

 

  

 

 

 

2,4 

 

 

 

204 

 

205 

206 

207 

207m 

208 

209 

210 

0+ 

 

5/2–  

0+ 

1/2– 

13/2+ 

0+ 

9/2+  

0+  

–25.110  

 

–23.770  

–23.785  

–22.452 

–20.819 

–21.749 

–17.614  

–14.728  

≥1.4×10
17

y  

1.4% 
1.73×10

7
y  

24.1% 

22.1% 

0.806 s 

52.4% 

3.253 h  

22.20 y  

α  

 

ε 

 

 

IT 

 

β– 

β– , α 

83 Bi 208.9804 

 

  

3,5 208 

209 

 

210 

211 

212 

5+ 

9/2– 

 

1– 

9/2– 

 1–  

–18.870  

–18.258  

 

–14.792  

–11.858  

–8.117  

3.68×10
5
 y  

1.9×10
19

y 

100% 

5.012 d  

2.14 m  

60.55 m  

ε  

α 

 

β–, α 

α, β– 

β–, α 

84 Po Non stable  

isotopes 

 

2,3?,4,6 207  

208 

209 

210 

211 

212 

5/2–  

0+  

1/2– 

0+  

9/2+  

18+  

–17.146  

–17.469  

–16.366  

–15.953  

–12.432  

–7.447  

5.80 h  

2.898 y  

102 y 

138.376 d 

0.516 s 

45.1 s 

ε, α 

α , ε 

α , ε 

α  

α  

α  
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Element   Atomic       Valance          A            J
π
            Δ                t1/2, Γ or          Decay 

 Z  El       Weight u                             MeV           Abundance      Mode 

85 At Non stable  

isotopes 

 

 

1,3,5,7 208 

209 

210 

211 

212 

6+  

9/2– 

 5+  

9/2–  

1–  

–12.49 

 –12.880  

–11.972  

–11.647  

–8.621  

1.63 h 3  

5.41 h 

8.1 h 

7.214 h 

0.314 s 

ε, α 

ε, α 

ε, α 

ε, α 

ε, α 

86 Rn Non stable  

isotopes 

 

 

0 220 

221 

222 

223 

224 

0+ 0+  

7/2+ 

0+  

7/2  

0+  

10.613 

14.472  

16.374 

20.3 ?  

22.4 ?  

55.6 s 2.4 h 

25.7 m 

3.8235 d 

24.3  m 

107 m 

α 

α, β– 

α 

β– 

β– 

87 Fr Non stable  

isotopes 

 

 

1 222 

223 

224 

225 

2–9/2–  

3/2– 

1–  

3/2–  

16.35  

18.384  

21.66  

23.81  

14.2 m  

 22.00 m 

3.33 m 

4.0 m 

β–,
14

C   

β–, α 

β– 

β– 

88 Ra Non stable  

isotopes 

 

2  223 

224 

225 

226 

227 

228 

3/2+  

0+  

1/2+  

0+  

3/2+  

0+  

17.235 

 18.827  

21.994  

23.669  

27.179  

28.942  

11.43 d 

3.6319 d 

14.9 d  

1600 y 

42.2 m 

5.75 y 

α 

α  

β–  

α 

β– 

β– 

89 Ac Non stable  

isotopes 

 

 

3 226 

227 

228 

229 

1 ? 

3/2– 

3+  

3/2+  

24.310  

25.851  

28.896 

30.75  

29.37 h  

21.772 y 

6.15 h 

62.7 m 

β–,  ε 

β– 

β– 

β– 

90Th 232.0380 

 

 

2?,3?,4 231 

232 

 

233 

234           

5/2+ 

0+ 

 

1/2+  

0+  

33.817 

35.448  

 

38.733  

40.614  

  25.52 h 

1.405×10
10

y  

100% 

21.83 m  

24.10 d 

β–, α  

α 

 

β– 

β– 

91 Pa Non stable  

isotopes 

  

4,5 230 

231 

232 

233 

2–  

3/2–  

2–  

3/2–  

32.174  

33.426  

35.948 

 37.490  

17.4 d 

3.276×10
4
y 

1.31 d 

26.975 d  

ε, β–, α 

α, SF 

β– , ε 

β– 

92 U 

 

 

238.0289 

 

 

2 to 6 

 

 

232 

233 

234 

 

235 

 

236 

237 

238 

 

239 

0+  

5/2+. 

0+ 

 

7/2– 

 

0+ 

1/2+  

0+  

 

5/2+ 

34.611 

36.920 

38.147  

 

40.921  

 

42.446 

45.392 

47.309  

 

50.574  

68.9 y 

1.592×10
5
y 

2.455×10
5
y 

0.0054% 

7.04×10
8
 y 

0.7204% 

2.342×10
7
y

6.75 d  

4.468×10
9
y 

99.2742% 

23.45 m  

α 

α , SF  

α, SF 

 

α 

 

α , SF 

β– 

α , SF 

 

β– 
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Element   Atomic       Valance          A            J
π
            Δ                t1/2, Γ or          Decay 

 Z  El       Weight u                             MeV           Abundance      Mode 

93Np Non stable  

isotopes 

 

 

 

3 to 6 236 

237 

238 

239 

240        

 6–  

5/2+  

2+  

5/2+  

5+  

 43.38  

44.873  

47.456  

49.312  

52.31  

154×10
3
 y 

 2.144×10
6
y 

 2.117 d    

2.356 d   

  61.9 m                  

ε, β–, α 

α, SF 

β– 

β– 

β– 

94Pu Non stable  

isotopes 

 

 

3, to 6 238 

239 

240 

241 

242  

243 

244       

 0+  

1/2+ 

 0+  

5/2+  

0+  

7/2+  

0+  

46.165  

48.590  

50.127  

52.957  

54.718  

57.756  

59.806  

87.7 y   

24110 y 

6561 y    

14.290 y 

3.75×10
5
y 

4.956 h     

8.00×10
7
 y 

α , SF 

α , SF 

α , SF 

β– , α 

α , SF 

β– 

α , SF 

95Am Non stable  

isotopes 

 

   
 

2 to 6 241 

242 

243 

244 

254 

5/2– 

 1– 

5/2–  

 6– 

5/2+  

52.936  

55.470  

57.176  

59.881  

61.900  

432.2 y 

16.02 h  

7370 y 

10.1 h  

2.05 h 

α , SF 

β–,  ε 

α , SF 

β– 

β– 

96Cm Non stable  

isotopes 

 

  

3,4 244 

245 

246 

247 

248 

249 

0+  

7/2+  

0+  

9/2–  

0+  

1/2+  

58.454 

61.005  

62.618  

 65.534  

67.392  

70.750  

18.1 y 

8500 y 

4760 y 

1.56×10
7
y 

3.48×10
5
y 

64.15 m  

α , SF 

α , SF 

α , SF 

α  

α , SF 

β– 

97Bk Non stable  

isotopes  

3,4 247 

248 

3/2–  65.491  

68.08   

1380 y 

>9 y  

α 

α 

98Cf Non stable  

isotopes 

 

3 250 

251 

252 

0+  

1/2+  

0+  

71.172  

74.135  

76.034  

13.08 y 

898 y 

2.645 y 

α , SF 

α , SF 

α , SF 

99 Es Non stable  

isotopes 

3 252 

253 

5–  

7/2+  

77.29  

79.014  

471.7 d 

20.47 d 

α , SF 

α , SF 

 100Fm     Non stable  

isotopes 

3 256 

257 

0+ 

 9/2+  

85.486  

88.590  

157.6 m 

100.5 d 

SF, α 

α 

 101Md     Non stable  

isotopes 

2,3 258   91.688  51.5 d  α, SF 
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Index: 

Absorption; 

- adge, 341-343                     

- coefficient, 331-353, 363 

- cross section, 252, 298,  

393, 398-401, 415-421 

- of a neutron, 378, 383 

Aboundance, 37-40, 67, 104,  

251, 371, 417, 424-432 

Activity, 115, 127, 137,  

    145-147, 417, 418 

Alpha; 

- decay 37, 70, 79, 108 

- particle, 5, 67, 81, 110, 

139,204, 295, 323, 333-

335, 389, 390, 414 

Q value of -, 79-82 

Angular momentum;  

intrinsic -, 55, 225, 229 

nuclear (spin) -, 58-60, 

211, 265 

- operator, 189, 262, 265 

orbital -, 8, 53, 54, 57, 65-

69, 72, 73, 152, 189-194, 

197, 202, 263-269, 274, 

283 

- quantum number, 31, 53-

59, 69, 160, 185, 190-195, 

208, 211, 254-257, 263, 

271, 273 

Average binding energy  

(see Binding energy) 

Barrier; 

coulomb -, 371-373 

fission -, 383-385 

potential -,168, 173-177, 

204-206, 384   

-  penetration, 177, 206 

Becquerel (Bq), 115, 116, 

123, 125, 145, 147, 417 

Beta decay, 82, 88,  111 

Bethe formula, 310, 316, 

322, 323, 334 

Bethe-Bloch, 313 

Bethe-Weizsäcker mass 

equation, 246, 384 

Binding energy, 41-47, 67, 

69, 75, 82, 112, 210-217, 

227-239, 235-249,289, 

369   

- of atomic electrons, 111, 

320, 341, 343-346  

- per nucleon, 45-47, 67-

69,238, 246, 272, 279, 

370, 371 

Bohr model of; 

- liquid drop, 237, 282, 

383 

- Bohr magneton 60, 423 

- compound nucleus, 73 

- H atom, 3, 7-10, 24, 31, 

32, 203 

Bohr Radius, 8, 422 
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Born approximation, 23, 310, 

360 

Born-Bethe, 322, 323 

Bound state, 28,155, 159, 

167, 178,184, 205, 210-

218, 225-228,260, 287 

- in three dimension, 186, 

199 

(See also Energy levels) 

Boundary condition, 184 

Breit-Wigner resonance 

formula, 399, 401 

Bremsstrahlung, 304, 315, 

326-328, 336, 357 

 

Capture  (see electron 

capture and radiative 

capture) 

Center of mass (CM), 395, 

402-410 

Centrifugal motion, 196 

Centrifugal potential, 

263,284 

Channel, 375 

Charge density, 21, 35, 62, 

166, 240-242, 323 

Charge independence (see 

Nuclear force) 

Charged ions, 232 

Charge liquid drop, 240, 241 

Charged particle, 1, 4, 25, 

231, 359, 367, 371, 394 

heavy - , 140, 321-324  

interaction of - , 294-315 

light - , 325, 329, 331 

positively - , 85, 232 

range of - , 317-323 

Chart of nuclides,34-39, 83 

Classification of charged 

particles, 321 

Collective models, 269 

Compound nucleus, 73, 77, 

378, 383-390, 395-401  

Conservation; 

-  of electric charge, 71 

-  of energy and mass, 12, 

41, 72, 74, 79, 83, 320, 

348, 355, 395, 404 

-  of momentum, 72, 74, 

77, 79, 320, 395, 404 

angular momentum - , 72 

Compton effect, 345, 351 

Compton wavelength, 221, 

345-349, 422 

Conversion; 

-  factors, 43, 113 

- of mass, 42 

- of photon, 357 

Correction shell term, 284 

Coulomb; 

-  barrier, 371, 372-376 

- energy, 62, 240-242, 

246, 289, 290, 384 

- force, 7, 23, 35, 45, 231, 

305, 321 

- interaction, 208, 235,  
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    241, 257, 276, 302 

- law, 26, 208-231 

- potential, 63,233, 255, 

256, 259, 277 

- term of SEMF, 240  

Critical energy, 328, 384 

Criticality, (see Nuclear 

reactor) 

Cross section; 

absorption - , 298, 412-421 

attenuation - , 299 

compton - , 351-354 

differential scattering - , 

303, 393, 405-411 

fission - , 400, 419-421 

geometrical - , 296, 297, 

401 

Klein-Nishna - , 352 

macroscopic - , 298, 331, 

339, 394 

microscopic - , 298 

molecular - , 299 

neutron - , 253, 387, 392-

401 

scattering - , 301-304, 393 

Thompson - , 348, 353 

- for pair production, 355-

357 

- for photoelectric, 341-343  

Curie, 115, 116, 121, 122, 

368, (see also activity) 

Marie Curie, 2, 70 

Current, 61, 149, 335 

Current density 59,166-168 

net - , 171-175 

 

Daughter nucleus, 79-84, 

86, 103, 108, 112, 114, 

128, 131, 134, 147 

fission - , 381 

successive - , 130, 132 

de Broglie postulate, 150  

- nuclear reaction, 73, 111 

- quantum number, 211-

212 

- wave function, 212 

de Broglie wave 

description, 153-162 

de Broglie wavelength, 15, 

150,159, 203, 287, 309 

Decay (see Compound 

nucleus, Radioactive-) 

-  constant, 96, 114-128, 

145 

-  chain, 103  

Deformed nucleus, 269, 

282, 384,385 

Deformed of deuteron, 212 

Degenerate energy level; 

- of  atom, 256, 257 

- of nuclei,  53, 198, 278 

Delayed neutron emitter, 

251 

Delta function, 195 

Density, 20-24, 33, 298, 

305-310,358 
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current - , 167, 112, 316 

probability - , 65, 163, 166 

(see also charge density) 

Detectors, 5, 49, 313, 351,  

357,364 

neutron detector, 390 

Deuteron; 

- bound-state, 210-229, 260 

- magnatic moment, 61, 

274, 275, 424 

Differential cross section 

(see Cross section) 

Diffraction of particle, 

20,150 

Dipole moment, 61, 63, 211, 

273-274, 282-284,376 

magnetic dipole, 59, 66, 

283 

Dirac equation, 22, 163 

Direct ionizing, 294, 295 

Direct reaction model, 232 

 

Effective range of potential, 

215, 217  

Einstein (1905), 3, 11,43, 

345 

Elastic collision, 305, 345, 

395, 410 

Elastic scattering (see Cross 

section, Nuclear reaction) 

Elastic scattering (n,n), 386  

Electric field, 48, 61, 

136,277 

Electric quadrupole 

moment, 59, 61-66, 282 

Electromagnetic radiation 

(see Gamma decay, Gamma 

ray, Photon) 

Electron-capture, 66, 86  

Electron decay, (see Beta ) 

Elements, 1-4 (see also 

radioactive elements) 

Endoergic (Endothermic ) 

reaction, 74, 77 

Energy; (see also Binding 

energy, Conservation of 

energy, Separation 

energy) 

- eigenvalue, 262 

- excitation, 234 

- in fission, 381-383 

- in Schrödinger equation, 

162-207 

- in uncertainty , 152 

- in wave packet, 155-161  

- level of atom, 7-11, 31-

33, 51-53, 255 

- level of nucleus, 51-53, 

65, 89, 107-109, 155-

200, 256-287 

- unit eV, 11, 38 

Energy dependence of cross 

section; 

- of electron,341 

- of gamma, 357 

- of neutron 395-399 



458 

 

Energy loss;  

- of charged particles, 304-

316 

- of gamma, 338 

- of neutron, 316-410 

- by emission (radiation), 

114, 304, 320, 328  

- interaction (attenuation), 

347-364 (see also 

Compton, Pair production 

and Photoelectric effect) 

- width, 400 

Energy state (see Energy 

levels) 

Epithermal energy, 386  

Secular - , 135, 147 

Transient - , 132-134, 147 

Exchange force, 29,219, 259 

Excited states (see Energy 

levels) 

Exclusion principle,208, 225, 

233, 250, 261, 268, 276  

 

Fast fission factor, 414-415 

Fermi-gass model, 234-239 

Fermi level, 236, 278, 289 

Fermi momentum, 232-234 

Fermi, nuclear charge, 22 

Fission, 3,184, (see nuclear 

fission and Cross section) 

-  barrier, 383-385 

- fragments (products), 141,  

, 251, 321, 373-381 

- energy, 381-383 

- neutrons, 374, 411-419 

- reaction, 367, 374-377 

- yield, 379-382 

Fissionable nuclides, 46, 

378-413 

Flux; 

   Neutron-, 375, 391,415 

photon - , 137, 299 

Four-factor frmula, 416  

 

Gamma decay (γ), 52, 81, 

93, 109 

Gamma emission, 92 

Gamma ray exposure, 136-

139 

Gamma scheme, 
137

Cs, 107 

 

Hahn, discovery of fission 

(1939), 3 

Half-life, 38, 95, 118-128, 

145 (see Radioactve decay) 

Haxel J.(1949), 264 

Heisenberg in (1927), 151 

Heisenberg uncertainty, 30, 

152 (see alsoUncertainty 

principle) 

 

Impact parameter, 296, 306-

309 

Inelastic scattering; 

- of charged particles, 31, 

305, 311 
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- of neutrons, 387-388, 393, 

401 

- of photons, 345, 350 (see 

also Cross section, 

Nuclear reaction) 

Interaction of cosmic, 390 

Interaction ; 

- neutrons, 376-386 

- of particles, 168 

- of radiation, 150-151, 295 

(see also Charged particle-

,Coulomb -, Gamma-, 

Neutron-) 

Internal conversion, 100 

Intrinsic, (see Angular 

moment, Quantum number.)  

Ion pair, 122-137, 315, 334 

- density, 323-334 

Ionization, 55, 135, 258,  

338, 356 

- energy, 9, 51, 69 

- potential 306-309, 341  

Isobar, 19, 209, 226, 242, 

289 

Isomer (isomeric transition), 

102, 107 

- shell model, 57, 243, 

 281-292 

- description, 250-282 

- potential, 259-261 

- prediction, 269-276 

- spin-orbit, 265-269 

Isotone, 19, 251, 252 

Isotope, 19, 33, 37, 40, 48, 

58, 104, 108, 111 (see 

also radioisotopes) 

aboundance of - , 38-41, 

251, 373 

table of - , 424-446 

 

Jensen , (Noble prize), 269 

Jensen, (spin-orbit), 264 

 

Keff and K∞, 412-421 

K-electron capture, (see 

electron capture) 

Kinetic energy, 8-16, 72-83, 

165, 203, 303, 334-336 

- in center of mass, 402-

411, 263, 269, 272, 275  

- in Fermi, 235-237 

- in stopping power, 305-

309 , 317, 327  

- (E –V0), 175 

Kinetic energy; 

- of electron, 326, 342-346 

, 350 

- of nonrelativistic 

particle, 158-159 

- of recoil nucleus, 90-92, 

112, 382 

 

Legendre polynomial, 62, 

191 

Level (see Energy levels) 
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Lifetime, 28, 91, 357, 396 

Decay - , 30, 119 

Line of stability, 106  

Linear attenuation 

coefficient, 339, 358, 364 

Linear momentum, 53, 57, 

90 (See also Momentum  

conservation) 

Liquid drop model, 237-249 , 

282-285 

Long-range coulomb force, 

45 

Long-range inter-atomic, 313 

 

Magic nucleus (see Binding 

energy, Magic numbers, 

Shell model) 

Magic numbers, 252-258,  

Magnetic constant, 413 

Magnetic field, 48-49, 60-61, 

223, 257 

Magnetic flux quantum, 413 

Magnetic moment, 59-61, 

212, 227, 272-276, 423 

(see also magnetic Dipole)  

Magnetic quantum number, 

55, 190-193, 256 

Magnetic resonance , 60 

Mass; 

- absorption coefficient, 363 

- attenuation coefficient, 

340-343, 359, 364 

- defect, 42-44 

- energy, 11-13, 28-30 

- number, 47, 104 

- scattering coss-section, 

354 

- spectroscopy, 47-50 

- stopping power, 306, 

318, 333 

- unit, 11, 16, 445, 423-

432 

table of - , 10, 424-446  

reduced - ,404 

relativistic - , 12-16 

, 267-284 

Maxwell'S equations, 304 

Mayer, M. G., 162 

Mean free path, 303, 340, 

396 

Mean lifetime, 119, 145,  

- relation to width of, 396 

(See also Decay 

constant) 

Meson, 29-30, 33, 219, 321 

Mirror nuclei, 19, 289 

Mirror reflection, 92 

Moment of inertia of 

nucleus, 285 

Momentum, 15-16, 23, 31, 

(See also  Angular 

momentum, Conservation) 

Multiplication factor, 412-

416 

Multipole moment, 66 

Muon, 141, 321, 336 
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Neutrino and antineutrino, 

16, 30, 82-86, 383, 391 

Neutron; 

- discovery, 4, 10 

- emitters, 251 

- interactions, 301, 339, 

376-392 

- magnatic moment, 61, 

227, 273-275 

- number, 17-18, 252 

- neutron potential, 209-

213, 235 

- per fission, 411 

- properties, 366-367 

- proton ratio, 34-36, 

70,193 

- proton potential, 315 

- quality factor, 140-141 

- scattering, 217 

- separation, 44, 215, 254 

- sources, 367-375 

 (see also Absorption,Cross 

section,Fission,Flux,Delay

, Energy dependence, 

Loss, Inelastic) 

Nonrelativistic electron, 311 

Nonrelativistic quantum 

mechanics, 162 

 Nuclear angular momentum 

(see Angular momentum, 

Spin) 

Nuclear binding energy (see 

Binding energy) 

Nuclear charge, 20, 62, 243 

Nuclear force; 27-30, 45, 

60,65, 208, 321 

- charge independence, 

237, 259 

- saturate, 260 

- spin dependent, 211-219, 

250 

- tenser dependent, 220-

222,  

Nuclear mass (see Mass) 

Nuclear models (see 

Collective model, 

Compound nucleus, Direct 

reaction, Liquiddrop 

model, Shell model) 

Nuclear radius (see Radius) 

Nuclear reaction, 12, 50, 

70-78, 168, 295-298, 366 

(See also Cross section, de 

Broglie, inelastic) 

Nuclear spin (see Angular 

momentum, Spin) 

Nucleon, 17-28, 150  

(see also Binding energy) 

Nucleon occupation 

number, 268 

Nucleon state, 223, 233-

237, 254, 263, 268 

- two nucleon system, 223, 

226  

Nuclide; 

stable - , 37, 46, 103, 251 
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table of - ,425 

unstable - , 38, 103 

(see Chart of nuclides, 

Radionuclides) 

 

Occupation of  orbital, 243  

Optical model, 232 

Orbital quantum number, 54, 

195, 263 (See also 

Quantum number) 

290, 355 (see  Bete decay) 

Orthogonality, 195 

Oscillator, 175, 178 

Harmonic oscillatory 

potential, 263 

 

Pair anhilation, 357-358 

Pair formation in gamma 

decay, 357 

Pair production, 341, 355-

360  

Pairing energy, 245-246 

Parent nuclide, 114 

Parity, 65-66, 180-184, 200-

202, 222 (see also Spin-

parity) 

Parity violation, 91 

Particle. Confined in a  

cubical box, 197-200 

Pauli, 58, 83, 84 

Pauli exclusion principle, 

209, 218, 220, 229, 242  

(see Exclusion principle,  

and generalized Pauli 

principle)  

Penetration (see Barrier 

penetration) 

Photoelectric effect, 3, 150, 

341-344, 358, 360 

Photon, 3, 9, 15-16 (see 

also Conservation of -, 

Gamma, Inelastic 

scattering -) 

Physical constants, 422-423 

Pion, 30 

Planck, M, 2 (see also  

Bohr) 

Planck's constant, 2, 8, 422 

Positron, β
+
, 67, 85, 136, 

158 

Potential; 

- by Yukawa, 209,218-222 

- energy,159-168, 241, 

383 

-  well, 178-186, 197- 202, 

214, 233-235, 243, 276-

279 

central -, 56, 187, 193-196 

shell model -,259-267,287 

(See also Barrier- , 

Centrifugal -, Coulomb -, 

Effective range -, 

Ionization -, Isomer -, n-n 

-, n-p -, Oscillator -)  

Probability density, 65, 163, 

166 
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Proton, (See Charged 

particle) 

 

Q-value; 

-  of alpha decay, 79-81 

- of beta decay, 82-85 

- of electron-capture, 86-87 

- of neutron reaction, 376  

- of nuclear reaction, 74-78 

Quantum mechanics (1950) 

28 

Quantum mechanics, 3, 22, 

150-151, 162-192, 250, 

399 

Quantum number; 

- for cubical box, 197-198 

- for deuteron, 211 

- for one dimension, 185 

- for shell model, 262 

intrinsic - , 55-56 

principle - , 8, 31, 160,355 

radial - , 263 

(see also Angular 

momentum - , Magnatic - , 

Orbital - , Spin – Total-.) 

 

Radial wave equation, 194-

197, 263 

Radioactive decay, 37, 70-88 

- constant, 114 

- dynamic, 114 

- of gamma, 337 

- law, 116-117, 339 

- rate, 114-120 

- scheme, 107-109 

- series, 104-106 

natural – 70-73 

 (See also Alpha decay, 

Beta decay, Gamma 

decay) 

Radioisotope production, 

86, 161 

Radius; 

 atomic - , 6 (see also 

Bohr radius) 

classical electron -

,343,423 

cross sectional - , 295-

297 

deuteron - , 208-218 

nuclear - , 20-23, 234 

Range; 

-  of atomic energy, 51 

(see also Breit-Wigner -, 

Magnetic -) 

- of nuclear force, 27-30, 

45, 68, 92, 208, 218, 

231, 244, 259 

effective Range, 215-218 

energy Range of neutron, 

141, 337, 367, 386-388 

energy Range of gamma, 

336, 345, 355 

(see also Charged particle 

- , Effective - , Long -) 

Reaction (see Nuclear rea.) 
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Recoil energy; 

- in beta decay, 83-84 

- in gamma decay, 90-93, 

346, 350-354  

- in nuclear reaction, 75 

(see also Kinetic energy-) 

Reduced neutron 

wavelength, 398 

Reduced mass, 214, 403 

Reflection coefficient, 171-

175 

Reflection of coordinates, 65, 

200, 287 

Relativistic energy (see 

Energy) 

Residual interaction, 209 

Resonance; 

- escape probability, 414 

- in neutron cross section, 

378, 386, 395-400, 414 

- of gamma, 92, 279 

simple - , 261-264 

Rest mass, 7, 13, 30, 79, 157, 

304, 318, 350 

Rutherford model of atom, 

4-6 

Rutherford scattering, 305, 

322 
 

Saturation of activation, 126 

Saturation of nuclear force, 

218-220 

Scattering in CM, 401-410 

  Scattering compton, 345  

 (see also Cross section, 

Elastic – Mass -, Neutron -

, Rutherford -)  

Schrödinger equation, 22, 

53, 162-202 

- for deuteron, 214 

- for shell model, 261 

Secular equilibrium, 135 

Selection rules of β, 88-90 

Selection rules of γ, 98-100 

Semiempirical mass 

formula (SEMF ), 238-247 

Separation energy of alpha, 

245 

Separation energy of 

neutron and proton, 44, 

245, 254,279 

Shell model, 199, 250-287 

- experimental basis, 251-

255 

- magic number, 262,272 

Shell model prediction, 269 

- of excited state, 280-282 

- of ground state, 269-272 

- of magic nuclei, 272 

- of nuclear magnetic 

moment, 272-276 

- of symmetry & coulomb 

correction, 276-279 

Single-particle; 

- model, 243 

- potential, 261-264 



465 

 

- range, 317 

- shell model, 272-276, 

282-283 

Spallation source, 369-370 

Spectrometer, 47-50 

Spectroscopic notation, 54, 

264, 267 

Spin; 

- momentum, 29, 56 

- of deuteron, 211-213 

- -orbit, 208, 222, 250, 264-

269, 287 

- -parity, 219-221, 269-272, 

280, 424 

- quantum number, 55,256 

- -spin interaction, 208 

nuclear -, 58-64, 272-275 

(See also Angular 

momentum, Isomer-, 

Jensen-, Nuclear force)  

spin-orbit coupling, 252--

,Shell model) 

Stability curve, 34-36, 106  

Standing wave, 155-159 

State (see Energy level) 

Statistical fluctuations in 

radioactive decay, 114, 

119, 339 

Statistical model (see Fermi-

gas model) 

Statistical  spin factor, 399  

Straggling; 

 

- of charged particle, 317 

- Of electron, 331 

s-wave function, 197 

 

Taylor B. N., 422 

Thermal energy of neutron, 

374, 386, 410 

Thermal energy of fission, 

382  

Thermal neutron, 386 

Thermalization, 382 

Thomson, J. J., 2, 4 

Thomson scattering, 352 

Threshold energy, 77-79, 

356, 401 

Total angular 

momentum,56-58, 66, 

211, 225, 250, 401 

Total binding energy (see 

Binding energy) 

Total cross section (see 

Cross section) 

Total energy (see Energy) 

Total mass (see Mass) 

Transient equilibrium,132 

Transmission, through step 

and barrier, 171-176 

Tunneling through Barrier, 

177, 384 

 

Uncertainty principle. 92, 

151-153, 309  

(See also Width) 
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Wave equation (see 

Schrödinger equation) 

Wave function,  

(see de Broglie, Schrödinger 

equation) 

Wave number, 169,173-175 

Wavelength (see Compton- 

,de Broglie -, Reduced 

neutron-) 

Weak nuclear interaction, 29, 

92, 218 

Width; 

-  barrier,176, 204 

- of energy level, 92, 396, 

399 

- of neutron line, 399 

- of resonance, 378, 395, 

410 

- of square well, 159, 174, 

178-186 

Wigner, E. (1937), 232 (see 

also Breit - ) 

 

Yield; 

neutron - , 368, 371 

radiation - , 326 

(see also Fission-) 

Yukawa, in (1939), 209 

(see als Potential -) 
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