Roll N	Vο	

D-983

M. A./M. Sc. (Fourth Semester) (Main/ATKT) EXAMINATION, May-June, 2020

MATHEMATICS

Paper First

(Functional Analysis—II)

Time: Three Hours [Maximum Marks: 80

Note: Attempt all Sections as directed.

Section—A 1 each

(Objective/Multiple Choice Questions)

Note: Attempt all questions.

Choose the correct answer:

- 1. Let T be a closed linear map of Banach space X into Banach space Y, then:
 - (a) T is closed
 - (b) T is open
 - (c) T is continuous
 - (d) All of the above

[2] D-983

2. Let X be an arbitrary normed linear space the mapping $f: X \to X^{**}$ is isometric isomorphics from X into X^{**} if:

- (a) It is linear
- (b) It is bounded
- (c) It preserves distance
- (d) All of the above
- 3. Let X and Y be normed linear space and $D \subset X$, then linear transformation $T:D \to Y$ is closed if and only if its graph G_T is:
 - (a) open
 - (b) closed
 - (c) bounded
 - (d) None of these
- 4. Let $\{T_n\}$ be a sequence of continuous linear operator of Banach space X into Banach space Y such that $\lim_{n\to\infty} T_n \ x = Tx$ exists for every $x\in X$, then T is continuous linear operator and :
 - (a) $\|T\| \le \lim_{n \to \infty} \inf \|T_n\|$
 - (b) $\|T\| \le \lim_{n \to \infty} \sup \|T_n\|$
 - (c) $\|T\| \ge \lim_{n \to \infty} \inf \|T_n\|$
 - (d) $\|T\| \ge \lim_{n\to\infty} \sup \|T_n\|$

- (a) $g(s) = \{0\}, g(z) = d, ||g|| = 1$
- (b) $g(s) \neq \{0\}, g(z) = d, ||g|| = 1$
- (c) $g(s) = \{0\}, g(z) = d, ||g|| \neq 1$
- (d) $g(s) \neq \{0\}, g(z) = d, ||g|| \neq 1$

6. Let X be a normed space, then the set of all bounded linear functional on X constitutes a normed space with the norm defined by:

(a)
$$||f|| = \sup \left\{ \frac{|f(x)|}{||x||} : x \in X; \ x \neq 0 \right\}$$

- (b) $||f|| = \sup \{|f(x)| : x \in X; ||x|| = 1\}$
- (c) Both (a) and (b)
- (d) None of these
- 7. Let X and Y be normed space over the field K and $T: X \to Y$ be a bounded linear operator, then:
 - (a) The adjoint T^* is bounded linear from Y^* to X^*
 - (b) $\|T^*\| = \|T\|$
 - (c) The mapping T of T* is an isometric isomorphism of B (X, Y) into B (Y*, X*)
 - (d) All of the above

8. Let Y be a linear subspace of normed linear space X and let f be a functional defined on Y, then f can be extended to functional F defined on the whole space X such that:

- (a) ||f|| = ||F||
- (b) $||f|| \neq ||F|| = 1$
- (c) $||f|| \neq \{0\}, ||F|| = 1$
- (d) None of these
- 9. If *x* and *y* are any two vectors in an inner product space X, then:

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$

The above inequality is known as:

- (a) Parallelogram law
- (b) Cauchy-Schwarz's inequality
- (c) Polarisation identity
- (d) Bessel's inequality
- 10. A normed space is an inner product space if and only if the norm of the normed space satisfy the equation.
 - (a) $||x + y|| \le ||x|| + ||y||$
 - (b) $|\langle x, y \rangle| \le ||x|| \cdot ||y||$
 - (c) $||x + y||^2 + ||x y||^2 = 2||x||^2 + 2||y||^2$
 - (d) $\langle x, y \rangle = \frac{1}{4} \left[\|x + y\|^2 \|x y\|^2 \right],$

where K = R

D-983

- 11. If A is a subset of an inner product space X, then which statement is incorrect?
 - (a) $A \subseteq A^{\perp \perp}$
 - $(A^{\perp})^{\perp} = A^{\perp \perp}$
 - $A = A^{\perp \perp}$ (c)
 - (d) None of these
- 12. Let H be a Hilbert space and let $\{e_i\}$ be an orthonormal set in H, then:

$$||x||^2 = \Sigma |\langle x_i e_i \rangle|^2$$

This equality is known as:

- Parseval's identity
- Apollonius identity
- Holder's inequality
- None of these
- 13. Let X be an inner product space. Which is incorrect statement?
 - (a) If $x \perp y \Leftrightarrow y \perp x, \forall x, y \in X$
 - $x \perp 0, \ \forall x \in X$
 - 0 is the only vector in X which is orthogonal to itself.
 - (d) $A \cap A^{\perp}$ is neither $\{0\}$ nor ϕ
 - i. e. $A \cap A^{\perp} \neq \{0\}$ or ϕ

- $M = M^{\perp \perp}$
- $H = M \oplus M^{\perp}$
- Both (a) and (b)
- None of these
- 15. A Banach space X is said to be reflexive if it is isometrically isomorphic to:

[6]

14. A subspace M of a Hilbert space H is closed in H if:

- (a) X*
- (b) X**
- X***
- (d) All of the above
- 16. Let H₁ and H₂ be Hilbert space and T and S are element of $B(H_1, H_2)$ and $\alpha \in K$, then which statement is incorrect?
 - (a) $(T + S)^* = T^* + S^*$
 - (b) $(TS)^* = S^* T^*$
 - T** = T
 - $(\alpha T)^* = \alpha T^*$
- 17. An operator T is called unitary if:
 - (a) $T = T^*$
 - T*T = TT*
 - T*T = TT* = I
 - (d) $\langle T_x, x \rangle \ge 0, \forall x \in H$

- 18. If T is a positive operator on a Hilbert space H, then:
 - (a) I + T is non-singular
 - (b) I T is non-singular
 - (c) I + T is singular
 - None of these
- 19. Let $P \in B(H)$ be a projection operator, then:
 - (a) R (P) and N (P) are closed subspace of H
 - I P is a projection
 - R(P) = N(I P)
 - All of the above
- 20. Which statement is incorrect?
 - Every positive operator is self-adjoint.
 - Every self-adjoint operator is normal.
 - Every normal operator is unitary.
 - Every unitary operator is normal.

Section—B 2 each

(Very Short Answer Type Questions)

Note: Attempt all questions. Answer in 2 to 3 sentences.

- 1. Give an example of a closed operator which is not bounded.
- Define dual space and normed linear space.
- 3. Define weak sequential compactness.
- 4. Define inner product space.

5. If A and B are subset of inner product space X such that $A \subset B$ then show that $A^{\perp} \supset B^{\perp}$.

[8]

- 6. Write the statement Riesz representation theorem.
- 7. Prove that every positive operator is self-adjoint.
- 8. Define normal operator on Hilbert space.

Section—C 3 each

(Short Answer Type Questions)

Note: Attempt all questions. Answer in 75 words.

1. Let X be a Banach space over the field K. If:

$$\{T_n\} \in B(X, Y)$$

be a sequence such that:

$$\lim_{n\to\infty} \mathsf{T}_n \; x = \mathsf{T} \mathsf{x}$$

where $x \in X$ exists, then prove that :

$$T \in B(X, Y)$$
.

2. Show that a Banach space is reflexive if and only if its dual space is reflexive.

- 3. Show that in an inner product space X $x \perp y$ if and only if $||x + \alpha y|| \ge ||x|| \, \forall$ scalar $\alpha \, \forall \, x, y \in X$.
- 4. Show that the linear space l^P , where $1 \le P < \infty$ and $P \ne 2$ where norm is defined by :

$$\|x\|_{\mathbf{P}} = \left(\sum |\xi_i|^{\mathbf{P}}\right)^{\frac{1}{\mathbf{P}}}$$

$$x = \langle \xi_i \rangle \in l^{\mathbf{P}}$$

is not an inner product space and hence it is not a Hilbert space.

5. Let H_1 and H_2 be Hilbert space and $T \in B(H_1, H_2)$, then prove that :

$$\|T * T\| = \|T\|^2 = \|TT*\|$$

6. Show that the mapping:

$$\psi: H \to H^*$$

defined by $\psi(y) = f_y$, where $f_y(x) = \langle x, y \rangle$ is one-one onto but not linear and an isometry.

7. Show that the product of two bounded self-adjoint operators S and T on a Hilbert space H is self-adjoint if and only if the operators commute.

P. T. O.

[10] D-983

- 8. Let H be complete Hilbert space and T ∈ B(H), then the following statements are equivalent:
 - (a) T is normal
 - b) T* is normal

(c)
$$\|T^*x\| = \|Tx\| \ \forall x \in H$$

Section—D 5 each

(Long Answer Type Questions)

Note: Attempt all questions. Answer in 150 words.

1. State and prove closed graph theorem.

Or

State and prove uniform boundedness principle.

2. Let M is a closed linear subspace of a normed linear space N and x_0 is a vector not in M, then there exist a functional f_0 in N* such that:

$$f_0(\mathbf{M}) \neq 0$$

and $f_0(x_0) \neq 0$.

Or

State and prove closed rang theorem for Banach space.

3. Prove that every Hilbert space is reflexive.

Or

Show that a closed convex subset C of Hilbert space H contains a unique vector of smallest norm.

[11] D-983

4. Let y be a fixed vector in Hilbert space H and let f_y be scalar defined by :

$$f_y(x) = \langle x, y \rangle \forall x \in \mathcal{H}$$

then show that:

$$f_y \in \mathrm{B}(\mathrm{H},\mathrm{K})$$

i.e. $f_y \in H^*$.

Further show that:

$$||y|| = ||f_y||$$

Or

A bounded linear operator T on a complex Hilbert space H is unitary if and only if T is isometry and surjective.